Fibonacci Polynomials and Determinant Identities
نویسندگان
چکیده
منابع مشابه
Generalized Bivariate Fibonacci-Like Polynomials and Some Identities
In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...
متن کاملBinomial Identities Involving The Generalized Fibonacci Type Polynomials
We present some binomial identities for sums of the bivariate Fi-bonacci polynomials and for weighted sums of the usual Fibonacci polynomials with indices in arithmetic progression.
متن کاملCompositions and Fibonacci Identities
We study formulas for Fibonacci numbers as sums over compositions. The Fibonacci number Fn+1 is the number of compositions of n with parts 1 and 2. Compositions with parts 1 and 2 form a free monoid under concatenation, and our formulas arise from free submonoids of this free monoid.
متن کاملFibonacci Identities and Graph Colorings
We generalize both the Fibonacci and Lucas numbers to the context of graph colorings, and prove some identities involving these numbers. As a corollary we obtain new proofs of some known identities involving Fibonacci numbers such as Fr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.
متن کاملFibonacci numbers and trigonometric identities
Webb & Parberry proved in 1969 a startling trigonometric identity involving Fibonacci numbers. This identity has remained isolated up to now, despite the amount of work on related polynomials. We provide a wide generalization of this identity together with what we believe (and hope!) to be its proper understanding.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Turkish Journal of Analysis and Number Theory
سال: 2014
ISSN: 2333-1100
DOI: 10.12691/tjant-2-5-6