Fibonacci numbers and Lucas numbers in graphs
نویسندگان
چکیده
منابع مشابه
Energy of Graphs, Matroids and Fibonacci Numbers
The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.
متن کاملTrigonometric Expressions for Fibonacci and Lucas Numbers
The amount of literature bears witness to the ubiquity of the Fibonacci numbers and the Lucas numbers. Not only these numbers are popular in expository literature because of their beautiful properties, but also the fact that they ‘occur in nature’ adds to their fascination. Our purpose is to use a certain polynomial identity to express these numbers in terms of trigonometric functions. It is in...
متن کاملThe Imperfect Fibonacci and Lucas Numbers
A perfect number is any positive integer that is equal to the sum of its proper divisors. Several years ago, F. Luca showed that the Fibonacci and Lucas numbers contain no perfect numbers. In this paper, we alter the argument given by Luca for the nonexistence of both odd perfect Fibonacci and Lucas numbers, by making use of an 1888 result of C. Servais. We also provide a brief historical accou...
متن کاملThe sum and product of Fibonacci numbers and Lucas numbers, Pell numbers and Pell-Lucas numbers representation by matrix method
Denote by {Fn} and {Ln} the Fibonacci numbers and Lucas numbers, respectively. Let Fn = Fn × Ln and Ln = Fn + Ln. Denote by {Pn} and {Qn} the Pell numbers and Pell-Lucas numbers, respectively. Let Pn = Pn × Qn and Qn = Pn + Qn. In this paper, we give some determinants and permanent representations of Pn, Qn, Fn and Ln. Also, complex factorization formulas for those numbers are presented. Key–Wo...
متن کاملGraphs, partitions and Fibonacci numbers
The Fibonacci number of a graph is the number of independent vertex subsets. In this paper, we investigate trees with large Fibonacci number. In particular, we show that all trees with n edges and Fibonacci number > 2n−1 + 5 have diameter ≤ 4 and determine the order of these trees with respect to their Fibonacci numbers. Furthermore, it is shown that the average Fibonacci number of a star-like ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2009
ISSN: 0166-218X
DOI: 10.1016/j.dam.2008.08.028