Fibonacci numbers and Lucas numbers in graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

Trigonometric Expressions for Fibonacci and Lucas Numbers

The amount of literature bears witness to the ubiquity of the Fibonacci numbers and the Lucas numbers. Not only these numbers are popular in expository literature because of their beautiful properties, but also the fact that they ‘occur in nature’ adds to their fascination. Our purpose is to use a certain polynomial identity to express these numbers in terms of trigonometric functions. It is in...

متن کامل

The Imperfect Fibonacci and Lucas Numbers

A perfect number is any positive integer that is equal to the sum of its proper divisors. Several years ago, F. Luca showed that the Fibonacci and Lucas numbers contain no perfect numbers. In this paper, we alter the argument given by Luca for the nonexistence of both odd perfect Fibonacci and Lucas numbers, by making use of an 1888 result of C. Servais. We also provide a brief historical accou...

متن کامل

The sum and product of Fibonacci numbers and Lucas numbers, Pell numbers and Pell-Lucas numbers representation by matrix method

Denote by {Fn} and {Ln} the Fibonacci numbers and Lucas numbers, respectively. Let Fn = Fn × Ln and Ln = Fn + Ln. Denote by {Pn} and {Qn} the Pell numbers and Pell-Lucas numbers, respectively. Let Pn = Pn × Qn and Qn = Pn + Qn. In this paper, we give some determinants and permanent representations of Pn, Qn, Fn and Ln. Also, complex factorization formulas for those numbers are presented. Key–Wo...

متن کامل

Graphs, partitions and Fibonacci numbers

The Fibonacci number of a graph is the number of independent vertex subsets. In this paper, we investigate trees with large Fibonacci number. In particular, we show that all trees with n edges and Fibonacci number > 2n−1 + 5 have diameter ≤ 4 and determine the order of these trees with respect to their Fibonacci numbers. Furthermore, it is shown that the average Fibonacci number of a star-like ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2009

ISSN: 0166-218X

DOI: 10.1016/j.dam.2008.08.028