Feature Selection Using Fisher's Ratio Technique for Automatic Speech Recognition

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection using Fisher's ratio technique for automatic speech recognition

Automatic Speech Recognition (ASR) involves mainly two steps; feature extraction and classification (pattern recognition). Mel Frequency Cepstral Coefficient (MFCC) is used as one of the prominent feature extraction techniques in ASR. Usually, the set of all 12 MFCC coefficients is used as the feature vector in the classification step. But the question is whether the same or improved classifica...

متن کامل

Acoustic feature selection for automatic emotion recognition from speech

Emotional expression and understanding are normal instincts of human beings, but automatical emotion recognition from speech without referring any language or linguistic information remains an unclosed problem. The limited size of existing emotional data samples, and the relative higher dimensionality have outstripped many dimensionality reduction and feature selection algorithms. This paper fo...

متن کامل

Ensemble Feature Selection for Multi-Stream Automatic Speech Recognition

Ensemble Feature Selection for Multi-Stream Automatic Speech Recognition

متن کامل

Temporal Feature Selection for Noisy Speech Recognition

Automatic speech recognition systems rely on feature extraction techniques to improve their performance. Static features obtained from each frame are usually enhanced with dynamical components using derivative operations (delta features). However, the susceptibility to noise of the derivative impacts on the accuracy of the recognition in noisy environments. We propose an alternative to the delt...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal on Cybernetics & Informatics

سال: 2015

ISSN: 2320-8430,2277-548X

DOI: 10.5121/ijci.2015.4204