Faster algorithms for k-subset sum and variations

نویسندگان

چکیده

Abstract We present new, faster pseudopolynomial time algorithms for the k - Subset Sum problem, defined as follows: given a set Z of n positive integers and targets $$t_1, \ldots , t_k$$ t 1 , … k determine whether there exist disjoint subsets $$Z_1,\dots ,Z_k \subseteq Z$$ Z ⋯ ⊆ such that $$\Sigma (Z_i) = t_i$$ Σ ( i ) = $$i 1, k$$ . Assuming $$t \max \{ t_1, t_k \}$$ max { } is maximum among targets, standard dynamic programming approach based on Bellman’s algorithm can solve problem in $$O(n t^k)$$ O n time. build upon recent advances due to Koiliaris Xu, well Bringmann, order provide devise two algorithms: deterministic one complexity $${\tilde{O}}(n^{k / (k+1)} ~ / + randomised $${\tilde{O}}(n + complexity. Additionally, we show how these be modified incorporate cardinality constraints enforced solution subsets. further demonstrate used cope with variations namely Ratio Multiple

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Faster Space-Efficient Algorithms for Subset Sum, k-Sum and Related Problems

We present space efficient Monte Carlo algorithms that solve Subset Sum and Knapsack instances with n items using O(2) time and polynomial space, where the O∗(·) notation suppresses factors polynomial in the input size. Both algorithms assume random read-only access to random bits. Modulo this mild assumption, this resolves a long-standing open problem in exact algorithms for NP-hard problems. ...

متن کامل

Quantum Algorithms for the Subset-Sum Problem

This paper introduces a subset-sum algorithm with heuristic asymptotic cost exponent below 0.25. The new algorithm combines the 2010 Howgrave-Graham–Joux subset-sum algorithm with a new streamlined data structure for quantum walks on Johnson graphs.

متن کامل

Priority Algorithms for the Subset-Sum Problem

Greedy algorithms are simple, but their relative power is not well understood. The priority framework (Borodin et al. in Algorithmica 37:295–326, 2003) captures a key notion of “greediness” in the sense that it processes (in some locally optimal manner) one data item at a time, depending on and only on the current knowledge of the input. This algorithmic model provides a tool to assess the comp...

متن کامل

A Faster Pseudopolynomial Time Algorithm for Subset Sum

Given a multiset S of n positive integers and a target integer t, the subset sum problem is to decide if there is a subset of S that sums up to t. We present a new divide-and-conquer algorithm that computes all the realizable subset sums up to an integer u in Õ ( min{√nu, u, σ} ) , where σ is the sum of all elements in S and Õ hides polylogarithmic factors. This result improves upon the standar...

متن کامل

Linear-time approximation algorithms for minimum subset sum and subset sum

We present a family of approximation algorithms for minimum subset sum with a worst-case approximation ratio of (k + 1)/k and which run in linear time assuming that k is constant. We also present a family of linear-time approximation algorithms for subset sum with worst-case approximation factors of k/(k+1) assuming that k is constant. The algorithms use approaches from and improve upon previou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Optimization

سال: 2022

ISSN: ['1573-2886', '1382-6905']

DOI: https://doi.org/10.1007/s10878-022-00928-0