Factorizations and physical representations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorizations and Physical Representations

A Hilbert space in M dimensions is shown explicitly to accommodate representations that reflect the prime numbers decomposition of M. Representations that exhibit the factorization of M into two relatively prime numbers: the kq representation (J. Zak, Phys. Today, 23 (2), 51 (1970)), and related representations termed q1q2 representations (together with their conjugates) are analysed, as well a...

متن کامل

Spectral Factorizations and Sums Ofsquares Representations

In this paper we nd a characterization for when a multivariable trigonometric polynomial can be written as a sum of squares. In addition, the truncated moment problem is addressed. A numerical algorithm for nding a sum of squares representation is presented as well. In the one-variable case, the algorithm nds a spectral factorization. The latter may also be used to nd inner-outer factor-izations.

متن کامل

Matrix Factorizations and Representations of Quivers I

This paper introduces a mathematical definition of the category of D-branes in Landau-Ginzburg orbifolds in terms of A∞-categories. Our categories coincide with the categories of (gradable) matrix factorizations for quasi-homogeneous polynomials. After setting up the necessary definitions, we prove that our category for the polynomial x is equivalent to the derived category of representations o...

متن کامل

Matrix Factorizations and Representations of Quivers Ii : Type Ade Case

We study a triangulated category of graded matrix factorizations for a polynomial of type ADE. We show that it is equivalent to the derived category of finitely generated modules over the path algebra of the corresponding Dynkin quiver. Also, we discuss a special stability condition for the triangulated category in the sense of T. Bridgeland, which is naturally defined by the grading.

متن کامل

Factorizations and representations of the backward second-order linear recurrences

We show the relationships between the determinants and permanents of certain tridiagonal matrices and the negatively subscripted terms of second-order linear recurrences.Also considering how to the negatively subscripted terms of second-order linear recurrences can be connected to Chebyshev polynomials by determinants of these matrices, we give factorizations and representations of these number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and General

سال: 2006

ISSN: 0305-4470,1361-6447

DOI: 10.1088/0305-4470/39/18/027