Facial Expression Recognition Using SIFT Descriptor
نویسندگان
چکیده
منابع مشابه
Facial Expression Recognition Using a Hybrid CNN-SIFT Aggregator
Recognizing facial expression has remained a challenging task in computer vision. Deriving an effective facial expression recognition is an important step for successful human-computer interaction systems. This paper describes a novel approach towards facial expression recognition task. It is motivated by the success of Convolutional Neural Networks (CNN) on face recognition problems. Unlike ot...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملPreprocessing and Descriptor Features for Facial Micro-Expression Recognition
Facial micro-expressions contain signi cant information about how people feel, even when they are attempting to conceal their emotions. Previously, very little research has been done to detect and recognize micro-expressions using computer vision methods. In this paper, detection and classi cation of microexpressions from the Spontaneous Micro-Expression database were implemented, following pre...
متن کاملCopy-move Forgery Detection using SIFT Descriptor
Today lots of software tools are available which are used to manipulate the images easily to change their originality. The technique which is usually used these days for tampering an image without leaving any microscopic evidence is copy-move forgery. There are many existing techniques to detect image tampering but their computational complexity is high. Here we propose a method in which we fin...
متن کاملFacial expression recognition using salient facial patches
This paper proposes a novel facial expression recognition method composed of two main steps: offline step and online step. The offline step selects the most salient facial patches using mutual information technique. The online step relies on the already selected patches to identify the facial expression using an SVM classifier. In both steps, the LBP operator was used to extract facial expressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: KIPS Transactions on Software and Data Engineering
سال: 2016
ISSN: 2287-5905
DOI: 10.3745/ktsde.2016.5.2.89