Faces of highest weight modules and the universal Weyl polyhedron
نویسندگان
چکیده
منابع مشابه
Highest-weight Theory: Verma Modules
We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or, equivalently, of a compact Lie group). It turns out that such representations can be characterized by their “highest-weight”. The first method we’ll consider is purely Lie-algebraic, it begins by constructing a universal representation with a given high...
متن کاملLaplace transform and unitary highest weight modules
The unitarizable modules in the analytic continuation of the holomorphic discrete series for tube type domains are realized as Hilbert spaces obtained through the Laplace transform.
متن کاملCharacterization of Simple Highest Weight Modules
We prove that for simple complex finite dimensional Lie algebras, affine Kac-Moody Lie algebras, the Virasoro algebra and the Heisenberg-Virasoro algebra, simple highest weight modules are characterized by the property that all positive root elements act on these modules locally nilpotently. We also show that this is not the case for higher rank Virasoro and for Heisenberg algebras.
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولUnitarizable weight modules over generalized Weyl algebras
We define a notion of unitarizability for weight modules over a generalized Weyl algebra (of rank one, with commutative coeffiecient ring R), which is assumed to carry an involution of the form X∗ = Y , R∗ ⊆ R. We prove that a weight module V is unitarizable iff it is isomorphic to its finitistic dual V . Using the classification of weight modules by Drozd, Guzner and Ovsienko, we obtain necess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2017
ISSN: 0001-8708
DOI: 10.1016/j.aim.2017.08.005