Face Recognition Based on Principal Component Analysis and Linear Discriminant Analysis
نویسندگان
چکیده
منابع مشابه
Face Recognition Based on Principal Component Analysis
The purpose of the proposed research work is to develop a computer system that can recognize a person by comparing the characteristics of face to those of known individuals. The main focus is on frontal two dimensional images that are taken in a controlled environment i.e. the illumination and the background will be constant. All the other methods of person’s identification and verification lik...
متن کاملComponent-Based Cascade Linear Discriminant Analysis for Face Recognition
This paper presents a novel face recognition method based on cascade Linear Discriminant Analysis (LDA) of the component-based face representation. In the proposed method, a face image is represented as four components with overlap at the neighboring area rather than a whole face patch. Firstly, LDA is conducted on the principal components of each component individually to extract component dis...
متن کاملFace Biometrics Based on Principal Component Analysis and Linear Discriminant Analysis
Problem statement: In facial biometrics, face features are used as the required human traits for automatic recognition. Feature extracted from face images are significant for face biometrics system performance. Approach: In this thesis, a framework of facial biometric was designed based on two subspace methods i.e., Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). Firs...
متن کاملIris Recognition Using Curvelet Transform Based on Principal Component Analysis and Linear Discriminant Analysis
The iris texture curve features play an important role in iris recognition. Although better performance in terms of recognition effectiveness can be attained using the recognition approach based on the wavelet transform, the iris curve singularity cannot be sparsely represented by wavelet coefficients. In view of the better approximation accuracy and sparse representation ability of the Curvele...
متن کاملPrincipal Component Analysis and Fisher Linear Discriminant Analysis
Principal Components Analysis (PCA) is an appearance based technique used widely for the dimensionality reduction and it records a great performance in face recognition. PCA based approaches typically include two phases: training and classification (Draper et al 2003). In the training phase, an Eigen space is established from the training samples using PCA and the training face images are mappe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering
سال: 2015
ISSN: 2320-3765,2278-8875
DOI: 10.15662/ijareeie.2015.0408046