Fabular: regression formulas as probabilistic programming
نویسندگان
چکیده
منابع مشابه
Probabilistic Planning by Probabilistic Programming
Automated planning is a major topic of research in artificial intelligence, and enjoys a long and distinguished history. The classical paradigm assumes a distinguished initial state, comprised of a set of facts, and is defined over a set of actions which change that state in one way or another. Planning in many real-world settings, however, is much more involved: an agent’s knowledge is almost ...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کاملProbabilistic Analysis of Random Mixed Horn Formulas
We present a probabilistic analysis of random mixed Horn formulas (MHF), i.e., formulas in conjunctive normal form consisting of a positive monotone part of quadratic clauses and a part of Horn clauses, with m clauses, n variables, and up to n literals per Horn clause. For MHFs parameterized by n and m with uniform distribution of instances and for large n, we derive upper bounds for the expect...
متن کاملLifted Probabilistic Inference with Counting Formulas
Lifted inference algorithms exploit repeated structure in probabilistic models to answer queries efficiently. Previous work such as de Salvo Braz et al.’s first-order variable elimination (FOVE) has focused on the sharing of potentials across interchangeable random variables. In this paper, we also exploit interchangeability within individual potentials by introducing counting formulas, which i...
متن کاملProbabilistic kernel regression models
We introduce a class of exible conditional probability models and techniques for classi cation regression problems Many existing methods such as generalized linear models and support vector machines are subsumed under this class The exibility of this class of techniques comes from the use of kernel functions as in support vector machines and the generality from dual formulations of stan dard re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM SIGPLAN Notices
سال: 2016
ISSN: 0362-1340,1558-1160
DOI: 10.1145/2914770.2837653