F4-invariant algorithm for computing SAGBI-Gröbner bases
نویسندگان
چکیده
منابع مشابه
A new algorithm for computing SAGBI bases up to an arbitrary degree
We present a new algorithm for computing a SAGBI basis up to an arbitrary degree for a subalgebra generated by a set of homogeneous polynomials. Our idea is based on linear algebra methods which cause a low level of complexity and computational cost. We then use it to solve the membership problem in subalgebras.
متن کاملComputing inhomogeneous Gröbner bases
In this paper we describe how an idea centered on the concept of self-saturation allows several improvements in the computation of Gröbner bases via Buchberger’s Algorithm. In a nutshell, the idea is to extend the advantages of computing with homogeneous polynomials or vectors to the general case. When the input data are not homogeneous, we use a technique described in Section 2: the main tool ...
متن کاملSignature-Based Gröbner Basis Algorithms - Extended MMM Algorithm for computing Gröbner bases
Signature-based algorithms is a popular kind of algorithms for computing Gröbner bases, and many related papers have been published recently. In this paper, no new signature-based algorithms and no new proofs are presented. Instead, a view of signature-based algorithms is given, that is, signature-based algorithms can be regarded as an extended version of the famous MMM algorithm. By this view,...
متن کاملSagbi Bases for Rings of Invariant Laurent Polynomials
Let k be a field, Ln = k[x ±1 1 , . . . , x ±1 n ] be the Laurent polynomial ring in n variables and G be a group of k-algebra automorphisms of Ln. We give a necessary and sufficient condition for the ring of invariants Ln to have a SAGBI basis. We show that if this condition is satisfied then Ln has a SAGBI basis relative to any choice of coordinates in Ln and any term order.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2015
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2015.01.045