Extreme values and kernel estimates of point processes boundaries
نویسندگان
چکیده
منابع مشابه
Free point processes and free extreme values
We continue here the study of free extreme values begun in [3]. We study the convergence of the free point processes associated with free extreme values to a free Poisson random measure ([15], [2]). We relate this convergence to the free extremal laws introduced in [3] and give the limit laws for free order statistics.
متن کاملChemical Trees with Extreme Values of Zagreb Indices and Coindices
We give sharp upper bounds on the Zagreb indices and lower bounds on the Zagreb coindices of chemical trees and characterize the case of equality for each of these topological invariants.
متن کاملSymmetric Jump Processes and their Heat Kernel Estimates
We survey the recent development of the DeGiorgi-Nash-Moser-Aronson type theory for a class of symmetric jump processes (or equivalently, a class of symmetric integro-differential operators). We focus on the sharp two-sided estimates for the transition density functions (or heat kernels) of the processes, a priori Hölder estimate and parabolic Harnack inequalities for their parabolic functions....
متن کاملAn alternative point process framework for modelling multivariate extreme values
Classical techniques for analysing multivariate extremes can often be framed in terms of the point process representation of de Haan (1985). Amongst other things, this representation provides a characterisation of the limiting distribution of the normalised componentwise maxima of independent and identically distributed unit Fréchet variables, i.e. the class of multivariate extreme value distri...
متن کاملGlobal Heat Kernel Estimates for Symmetric Jump Processes
In this paper, we study sharp heat kernel estimates for a large class of symmetric jump-type processes in Rd for all t > 0. A prototype of the processes under consideration are symmetric jump processes on Rd with jumping intensity 1 Φ(|x− y|) Z [α1,α2] c(α, x, y) |x− y|d+α ν(dα), where ν is a probability measure on [α1, α2] ⊂ (0, 2), Φ is an increasing function on [0,∞) with c1e2 β ≤ Φ(r) ≤ c3e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Probability and Statistics
سال: 2004
ISSN: 1292-8100,1262-3318
DOI: 10.1051/ps:2004008