Extreme Monophonic Graphs and Extreme Geodesic Graphs
نویسندگان
چکیده
منابع مشابه
Extreme eigenvalues of nonregular graphs
Let λ1 be the greatest eigenvalue and λn the least eigenvalue of the adjacency matrix of a connected graph G with n vertices, m edges and diameter D. We prove that if G is nonregular, then Δ− λ1 > nΔ− 2m n(D(nΔ− 2m)+ 1) 1 n(D + 1) , where Δ is the maximum degree of G. The inequality improves previous bounds of Stevanović and of Zhang. It also implies that a lower bound on λn obtained by Alon an...
متن کاملextreme edge-friendly indices of complete bipartite graphs
let g=(v,e) be a simple graph. an edge labeling f:e to {0,1} induces a vertex labeling f^+:v to z_2 defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where z_2={0,1} is the additive group of order 2. for $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. a labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. i_f(g)=v_f(1)-v_f(0) is called the edge-f...
متن کاملMonophonic Distance in Graphs
For any two vertices u and v in a connected graph G, a u − v path is a monophonic path if it contains no chords, and the monophonic distance dm(u, v) is the length of a longest u − v monophonic path in G. For any vertex v in G, the monophonic eccentricity of v is em(v) = max {dm(u, v) : u ∈ V}. The subgraph induced by the vertices of G having minimum monophonic eccentricity is the monophonic ce...
متن کاملOn the extreme eigenvalues of regular graphs
In this paper, we present an elementary proof of a theorem of Serre concerning the greatest eigenvalues of k-regular graphs. We also prove an analogue of Serre’s theorem regarding the least eigenvalues of k-regular graphs: given > 0, there exist a positive constant c = c( , k) and a nonnegative integer g = g( , k) such that for any k-regular graph X with no odd cycles of length less than g, the...
متن کاملOn monophonic sets in graphs
In this paper we study monophonic sets in a connected graph G. First, we present a realization theorem proving, that there is no general relationship between monophonic and geodetic hull sets. Second, we study the contour of a graph, introduced by Cáceres and alt. [2] as a generalization of the set of extreme vertices where the authors proved that the contour of a graph is a g-hull set; in this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tamkang Journal of Mathematics
سال: 2016
ISSN: 2073-9826,0049-2930
DOI: 10.5556/j.tkjm.47.2016.2045