Extremal solution and Liouville theorem for anisotropic elliptic equations
نویسندگان
چکیده
<p style='text-indent:20px;'>We study the quasilinear Dirichlet boundary problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation} \nonumber \begin{cases} -Qu = \lambda e^{u}, \text{in}~~ \Omega, \\ u 0, \qquad \;~~\text{on}~~~~ \partial\Omega, \end{cases} \end{equation} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \lambda&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, id="M2">\begin{document}$ \Omega\subset\mathbb{R}^{N} (<inline-formula><tex-math id="M3">\begin{document}$ N\geq2 $\end{document}</tex-math></inline-formula>) bounded domain, and operator id="M4">\begin{document}$ Q $\end{document}</tex-math></inline-formula>, known as Finsler-Laplacian or anisotropic Laplacian, defined by</p><p id="FE2"> Qu: \sum\limits_{i 1}^{N}\frac{\partial}{\partial x_{i}}(F(\nabla u)F_{\xi_{i}}(\nabla u)). style='text-indent:20px;'>Here, id="M5">\begin{document}$ F_{\xi_{i}} \frac{\partial F}{\partial\xi_{i}}(\xi) id="M6">\begin{document}$ F: \mathbb{R}^{N}\rightarrow [0, +\infty) convex function of id="M7">\begin{document}$ C^{2}(\mathbb{R}^{N}\setminus\{0\}) satisfies certain assumptions. We derive existence extremal solution obtain that it regular, if id="M8">\begin{document}$ N\leq9 $\end{document}</tex-math></inline-formula>.</p><p also concern Hénon type Liouville equation, </p><p id="FE3"> (F^{0}(x))^{\alpha}e^{u} ~~\text{in} ~~\mathbb{R}^{N}, id="M9">\begin{document}$ \alpha&gt;-2 id="M10">\begin{document}$ id="M11">\begin{document}$ F^{0} support id="M12">\begin{document}$ K: \{x\in\mathbb{R}^{N}:F(x)&lt;1\} $\end{document}</tex-math></inline-formula>. theorem for stable solutions finite Morse index id="M13">\begin{document}$ 2\leq N&lt;10+4\alpha id="M14">\begin{document}$ 3\leq N&lt;10+4\alpha^{-} respectively, where id="M15">\begin{document}$ \alpha^{-} \min\{\alpha, 0\} $\end{document}</tex-math></inline-formula>.</p>
منابع مشابه
A Liouville type theorem for a class of anisotropic equations
In this paper we are dealing with entire solutions of a general class of anisotropic equations. Under some appropriate conditions on the data, we show that the corresponding equations cannot have non-trivial positive solutions bounded from above.
متن کاملA Liouville Theorem for Non Local Elliptic Equations
We prove a Liouville-type theorem for bounded stable solutions v ∈ C(R) of elliptic equations of the type (−∆)v = f(v) in R, where s ∈ (0, 1) and f is any nonnegative function. The operator (−∆) stands for the fractional Laplacian, a pseudo-differential operator of symbol |ξ|.
متن کاملLiouville Theorem for 2d Navier-stokes Equations
(One may modify the question by putting various other restrictions on (L); for example, one can consider only steady-state solutions, or solutions with finite rate of dissipation or belonging to various other function spaces, etc.) We have proved a positive result for dimension n = 2 which we will discuss below, but let us begin by mentioning why the basic problem is interesting. Generally spea...
متن کاملOn a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two
In this paper we establish a Liouville type theorem for fully nonlinear elliptic equations related to a conjecture of De Giorgi in IR2. We prove that if the level lines of a solution have bounded curvature, then these level lines are straight lines. As a consequence, the solution is one-dimensional. The method also provides a result on free boundary problems of Serrin type.
متن کاملLiouville type results for semilinear elliptic equations in unbounded domains
This paper is devoted to the study of some class of semilinear elliptic equations in the whole space: −aij(x)∂iju(x)− qi(x)∂iu(x) = f(x, u(x)), x ∈ R . The aim is to prove uniqueness of positive bounded solutions Liouville type theorems. Along the way, we establish also various existence results. We first derive a sufficient condition, directly expressed in terms of the coefficients of the line...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2021
ISSN: ['1534-0392', '1553-5258']
DOI: https://doi.org/10.3934/cpaa.2021144