Extracellular vesicles from human pancreatic islets suppress human islet amyloid polypeptide amyloid formation
نویسندگان
چکیده
منابع مشابه
Extracellular vesicles from human pancreatic islets suppress human islet amyloid polypeptide amyloid formation.
Extracellular vesicles (EVs) are small vesicles released by cells to aid cell-cell communication and tissue homeostasis. Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in pancreatic islets of patients with type 2 diabetes (T2D). IAPP is secreted in conjunction with insulin from pancreatic β cells to regulate glucose metabolism. Here, using a combination ...
متن کاملGenetic background determines the extent of islet amyloid formation in human islet amyloid polypeptide transgenic mice.
Genetic background is important in determining susceptibility to metabolic abnormalities such as insulin resistance and beta-cell dysfunction. Islet amyloid is associated with reduced beta-cell mass and function and develops in the majority of our C57BL/6J x DBA/2J (F(1)) male human islet amyloid polypeptide (hIAPP) transgenic mice after 1 yr of increased fat feeding. To determine the relative ...
متن کاملOophorectomy promotes islet amyloid formation in human islet amyloid polypeptide transgenic mice.
متن کامل
Micelle formation by a fragment of human islet amyloid polypeptide.
Human islet amyloid polypeptide (hIAPP) is the major component of amyloid plaques found in the pancreatic islets of persons with type 2 diabetes mellitus. HIAPP belongs to the group of amyloidogenic proteins, characterized by their aggregation and deposition as fibrillar amyloid in various body tissues. The aggregation of amyloidogenic proteins is thought to occur via a common pathway, but curr...
متن کاملInhibitors can arrest the membrane activity of human islet amyloid polypeptide independently of amyloid formation.
Human islet amyloid polypeptide (hIAPP), co-secreted with insulin from pancreatic beta cells, misfolds to form amyloid deposits in non-insulin-dependent diabetes mellitus (NIDDM). Like many amyloidogenic proteins, hIAPP is membrane-active: this may be significant in the pathogenesis of NIDDM. Non-fibrillar hIAPP induces electrical and physical breakdown in planar lipid bilayers, and IAPP insert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2017
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1711389114