Extensions of solvable Lie algebras with naturally graded filiform nilradical
نویسندگان
چکیده
In this work, we consider extensions of solvable Lie algebras with naturally graded filiform nilradicals. Note that there exist two [Formula: see text] and We find all one-dimensional nilradical text]. prove exists a unique non-split central extension maximal codimension. Moreover, whose codimension is equal to one are found compared these the nilradicals algebra
منابع مشابه
Solvable Lie algebras with $N(R_n,m,r)$ nilradical
In this paper, we classify the indecomposable non-nilpotent solvable Lie algebras with $N(R_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $N(R_n,m,r)$.We also prove that these solvable Lie algebras are complete and unique, up to isomorphism.
متن کاملNaturally graded p-filiform Lie algebras in arbitrary finite dimension
The present paper offers the classification of naturally graded p filiform Lie algebras in arbitrary finite dimension n . For sufficiently high n , (n ≥ max{3p − 1, p + 8}), and for all admissible value of p the results are a generalization of Vergne’s in case of filiform Lie algebras [11]. Mathematics subject classification 2000: 22E60, 17B30, 17B70
متن کاملNaturally graded quasi-filiform Leibniz algebras
The classification of naturally graded quasi-filiform Lie algebras is known; they have the characteristic sequence (n − 2, 1, 1) where n is the dimension of the algebra. In the present paper we deal with naturally graded quasi-filiform non-Lie–Leibniz algebras which are described by the characteristic sequence C(L) = (n − 2, 1, 1) or C(L) = (n − 2, 2). The first case has been studied in [Camach...
متن کاملsolvable lie algebras with $n(r_n,m,r)$ nilradical
in this paper, we classify the indecomposable non-nilpotent solvable lie algebras with $n(r_n,m,r)$ nilradical,by using the derivation algebra and the automorphism group of $n(r_n,m,r)$.we also prove that these solvable lie algebras are complete and unique, up to isomorphism.
متن کاملLie algebras with a free nilradical
We classify solvable Lie groups with a free nilradical admitting an Einstein left-invariant metric. Any such group is essentially determined by the nilradical of its Lie algebra, which is then called an Einstein nilradical. We show that among the free Lie algebras, there are very few Einstein nilradicals. Except for the one-step (abelian) and the two-step ones, there are only six (here f(m, p) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra and Its Applications
سال: 2023
ISSN: ['1793-6829', '0219-4988']
DOI: https://doi.org/10.1142/s0219498824501615