Extended One-Step Methods for Solving Delay- Differential Equations
نویسندگان
چکیده
منابع مشابه
Extended one-step methods for solving delay-differential equations
We discuss extended one-step methods of order three for the numerical solution of delay-differential equations. A convergence theorem and the numerical studies regarding the convergence factor of these methods are given. Also, we investigate the stability properties of these methods. The results of the theoretical studies are illustrated by numerical examples.
متن کاملA class of Extended one-step methods for solving delay differential equations
We derive a class of extended one-step methods of order m for solving delay-differential equations. This class includes methods of fourth and fifth order of accuracy. Also, the class of these methods depends on two free parameters. A convergence theorem and convergence factor of these methods are given. In addition, we investigate the stability properties of these methods. The results of the ar...
متن کاملEXTENDED PREDICTOR-CORRECTOR METHODS FOR SOLVING FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY
In this paper, the (m+1)-step Adams-Bashforth, Adams-Moulton, and Predictor-Correctormethods are used to solve rst-order linear fuzzy ordinary dierential equations. The conceptsof fuzzy interpolation and generalised strongly dierentiability are used, to obtaingeneral algorithms. Each of these algorithms has advantages over current methods. Moreover,for each algorithm a convergence formula can b...
متن کاملExtended One-Step Schemes for Stiff and Non-Stiff Delay Differential Equations
The importance of delay differential equations (DDEs), in modelling mathematical biological, engineering and physical problems, has motivated searchers to provide efficient numerical methods for solving such important type of differential equations. Most of these types of differential models are stiff, and suitable numerical methods must be introduced to simulate the solutions. In this paper, w...
متن کاملMulti - step Maruyama methods for stochastic delay differential equations ∗
In this paper the numerical approximation of solutions of Itô stochastic delay differential equations is considered. We construct stochastic linear multi-step Maruyama methods and develop the fundamental numerical analysis concerning their Lp-consistency, numerical Lp-stability and Lpconvergence. For the special case of two-step Maruyama schemes we derive conditions guaranteeing their mean-squa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics & Information Sciences
سال: 2014
ISSN: 1935-0090,2325-0399
DOI: 10.12785/amis/080302