Exponential propagators for the Schrödinger equation with a time-dependent potential

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic time-average propagators for the Schrödinger equation with a time-dependent Hamiltonian.

Several symplectic splitting methods of orders four and six are presented for the step-by-step time numerical integration of the Schrödinger equation when the Hamiltonian is a general explicitly time-dependent real operator. They involve linear combinations of the Hamiltonian evaluated at some intermediate points. We provide the algorithm and the coefficients of the methods, as well as some num...

متن کامل

An exponential time differencing method for the nonlinear Schrödinger equation

The spectral methods offer very high spatial resolution for a wide range of nonlinear wave equations, so, for the best computational efficiency, it should be desirable to use also high order methods in time but without very strict restrictions on the step size by reason of numerical stability. In this paper we study the exponential time differencing fourth-order Runge-Kutta (ETDRK4) method; thi...

متن کامل

Multiresolution scheme for Time-Dependent Schrödinger Equation

Article history: Received 3 November 2009 Accepted 21 November 2009 Available online xxxx

متن کامل

Fourth order real space solver for the time-dependent Schrödinger equation with singular Coulomb potential

We present a novel numerical method and algorithm for the solution of the 3D axially symmetric timedependent Schrödinger equation in cylindrical coordinates, involving singular Coulomb potential terms besides a smooth time-dependent potential. We use fourth order finite difference real space discretization, with special formulae for the arising Neumann and Robin boundary conditions along the sy...

متن کامل

Global error control of the time-propagation for the Schrödinger equation with a time-dependent Hamiltonian

We use a posteriori error estimation theory to derive a relation between local and global error in the propagation for the time-dependent Schrödinger equation. Based on this result, we design a class of h,padaptive Magnus–Lanczos propagators capable of controlling the global error of the time-stepping scheme by only solving the equation once. We provide results for models of several different s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2018

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.5036838