Exponential dichotomies and Fredholm operator for parabolic equations
نویسندگان
چکیده
منابع مشابه
Exponential and Polynomial Dichotomies of Operator Semigroups on Banach Spaces
Let A generate a C0–semigroup T (·) on a Banach space X such that the resolvent R(iτ, A) exists and is uniformly bounded for τ ∈ R. We show that there exists a closed, possibly unbounded projection P on X commuting with T (t). Moreover, T (t)x decays exponentially as t → ∞ for x in the range of P and T (t)x exists and decays exponentially as t→ −∞ for x in kernel of P . The domain of P depends ...
متن کاملExponential Dichotomies for Dynamic Equations on Measure Chains
In this paper we introduce the notion of an exponential dichotomy for not necessarily invertible linear dynamic equations in Banach spaces within the framework of the “Calculus on Measure Chains.” Particularly this unifies the corresponding theories for difference and differential equations. We apply our approach to obtain results on perturbed systems. 2000 Mathematics Subject Classification. 3...
متن کاملRegularity and Exponential Growth of Pullback Attractors for Semilinear Parabolic Equations Involving the Grushin Operator
and Applied Analysis 3 The content of the paper is as follows. In Section 2, for the convenience of the reader, we recall some concepts and results on function spaces and pullback attractors which we will use. In Section 3, we prove the existence of pullback attractors in the spaces S0 Ω and L2p−2 Ω by using the asymptotic a priori estimate method. In Section 4, under additional assumptions of ...
متن کاملExponential Dichotomies and Homoclinic Orbits in Functional Differential Equations*
Suppose an autonomous functional differential equation has an orbit r which is homochnic to a hyperbolic equilibrium point. The purpose of this paper is to give a procedure for determining the behavior of the solutions near r of a functional differential equation which is a nonautonomous periodic perturbation of the original one. The procedure uses exponential dichotomies and the Fredholm alter...
متن کاملCorrected Operator Splitting for Nonlinear Parabolic Equations
We present a corrected operator splitting (COS) method for solving nonlinear parabolic equations of convection-diiusion type. The main feature of this method is the ability to correctly resolve nonlinear shock fronts for large time steps, as opposed to standard operator splitting (OS) which fails to do so. COS is based on solving a conservation law for modeling convection, a heat type equation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2002
ISSN: 0895-7177
DOI: 10.1016/s0895-7177(02)00083-3