Exploring Adversarially Robust Training for Unsupervised Domain Adaptation
نویسندگان
چکیده
Unsupervised Domain Adaptation (UDA) methods aim to transfer knowledge from a labeled source domain an unlabeled target domain. UDA has been extensively studied in the computer vision literature. Deep networks have shown be vulnerable adversarial attacks. However, very little focus is devoted improving robustness of deep models, causing serious concerns about model reliability. Adversarial Training (AT) considered most successful defense approach. Nevertheless, conventional AT requires ground-truth labels generate examples and train which limits its effectiveness In this paper, we explore robustify models: How enhance data via while learning domain-invariant features for UDA? To answer question, provide systematic study into multiple variants that can potentially applied UDA. Moreover, propose novel Adversarially Robust method accordingly, referred as ARTUDA. Extensive experiments on attacks benchmarks show ARTUDA consistently improves models. Code available at https://github.com/shaoyuanlo/ARTUDA .
منابع مشابه
Asymmetric Tri-training for Unsupervised Domain Adaptation
Deep-layered models trained on a large number of labeled samples boost the accuracy of many tasks. It is important to apply such models to different domains because collecting many labeled samples in various domains is expensive. In unsupervised domain adaptation, one needs to train a classifier that works well on a target domain when provided with labeled source samples and unlabeled target sa...
متن کاملAn unsupervised deep domain adaptation approach for robust speech recognition
This paper addresses the robust speech recognition problem as a domain adaptation task. Specifically, we introduce an unsupervised deep domain adaptation (DDA) approach to acoustic modeling in order to eliminate the training–testing mismatch that is common in real-world use of speech recognition. Under a multi-task learning framework, the approach jointly learns two discriminative classifiers u...
متن کاملRobust Unsupervised Domain Adaptation for Neural Networks via Moment Alignment
A novel approach for unsupervised domain adaptation for neural networks is proposed that relies on a metricbased regularization of the learning process. The metric-based regularization aims at domain-invariant latent feature representations by means of maximizing the similarity between domainspecific activation distributions. The proposed metric results from modifying an integral probability me...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملBoosting for Unsupervised Domain Adaptation
To cope with machine learning problems where the learner receives data from different source and target distributions, a new learning framework named domain adaptation (DA) has emerged, opening the door for designing theoretically well-founded algorithms. In this paper, we present SLDAB, a self-labeling DA algorithm, which takes its origin from both the theory of boosting and the theory of DA. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Lecture Notes in Computer Science
سال: 2023
ISSN: ['1611-3349', '0302-9743']
DOI: https://doi.org/10.1007/978-3-031-26351-4_34