Exploiting Multilevel Preconditioning Techniques in Eigenvalue Computations
نویسندگان
چکیده
منابع مشابه
Exploiting Multilevel Preconditioning Techniques in Eigenvalue Computations
In the Davidson method, any preconditioner can be exploited for the iterative computation of eigenpairs. However, the convergence of the eigenproblem solver may be poor for a high quality preconditioner. Theoretically, this counter-intuitive phenomenon with the Davidson method is remedied by the Jacobi–Davidson approach, where the preconditioned system is restricted to appropriate subspaces of ...
متن کاملInexact Newton Preconditioning Techniques for Large Symmetric Eigenvalue Problems
This paper studies a number of Newton methods and use them to define new secondary linear systems of equations for the Davidson eigenvalue method. The new secondary equations avoid some common pitfalls of the existing ones such as the correction equation and the Jacobi-Davidson preconditioning. We will also demonstrate that the new schemes can be used efficiently in test problems.
متن کاملMultilevel Preconditioning
This paper is concerned with multilevel techniques for preconditioning linear systems arising from Galerkin methods for elliptic boundary value problems. A general estimate is derived which is based on the characterization of Besov spaces in terms of weighted sequence norms related to corresponding multilevel expansions. The result brings out clearly how the various ingredients of a typical mul...
متن کاملLecture 14: Eigenvalue Computations
This lecture discusses a few numerical methods for the computation of eigenvalues and eigenvectors of matrices. Most of this lecture will focus on the computation of a few eigenvalues of a large symmetric matrix, but some nonsymmetric matrices also will be considered, including the Google matrix. The QRalgorithm for both symmetric and nonsymmetric matrices of small to modest size will be discus...
متن کاملEigenvalue Computations Based on IDR
The induced dimension reduction (IDR) method, which has been introduced as a transpose-free Krylov space method for solving nonsymmetric linear systems, can also be used to determine approximate eigenvalues of a matrix or operator. The IDR residual polynomials are the products of a residual polynomial constructed by successively appending linear smoothing factors and the residual polynomials of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2004
ISSN: 1064-8275,1095-7197
DOI: 10.1137/s1064827599361059