Explicit identities of matrix powers of matrix

نویسندگان

چکیده

In this paper, we present some new explicit identities of matrix powers and their proofs. For instance, AC+D=AC +ADand(AB)T=ABTfor matrices A‚B C.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Powers of a Matrix and Combinatorial Identities

In this article we obtain a general polynomial identity in k variables, where k ≥ 2 is an arbitrary positive integer. We use this identity to give a closed-form expression for the entries of the powers of a k × k matrix. Finally, we use these results to derive various combinatorial identities.

متن کامل

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

Identities via Bell matrix and Fibonacci matrix

In this paper, we study the relations between the Bell matrix and the Fibonacci matrix, which provide a unified approach to some lower triangular matrices, such as the Stirling matrices of both kinds, the Lah matrix, and the generalized Pascal matrix. To make the results more general, the discussion is also extended to the generalized Fibonacci numbers and the corresponding matrix. Moreover, ba...

متن کامل

Sums of Powers by Matrix Methods

This equation may be viewed as reducing the sum of n terms of the power sequence to a linear combination of the first r + 1 terms. Accordingly, there is an implicit assumption that n > v. Note that the matrix appearing as the middle factor on the right side of this equation is lower triangular. The zeros that should appear above the main diagonal have been omitted. The nonzero entries constitut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: World Journal of Advanced Engineering Technology and Sciences

سال: 2023

ISSN: ['2582-8266']

DOI: https://doi.org/10.30574/wjaets.2023.9.1.0139