Explicit computations in Iwasawa theory

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computations About Tate-Shafarevich Groups Using Iwasawa Theory

We explain how to combine deep results from Iwasawa theory with explicit computation to obtain information about p-parts of Tate-Shafarevich groups of elliptic curves over Q. This method provides a practical way to compute #X(E/Q)(p) in many cases when traditional p-descent methods are completely impractical and also in situations where results of Kolyvagin and Kato do not apply.

متن کامل

Iwasawa theory and generalizations

This is an introduction to Iwasawa theory and its generalizations. We discuss some main conjectures and related subjects. Mathematics Subject Classification (2000). Primary 11R23; Secondary 11G40, 14G10.

متن کامل

Iwasawa Theory for Elliptic Curves

The topics that we will discuss have their origin in Mazur’s synthesis of the theory of elliptic curves and Iwasawa’s theory of ZZp-extensions in the early 1970s. We first recall some results from Iwasawa’s theory. Suppose that F is a finite extension of Q and that F∞ is a Galois extension of F such that Gal(F∞/F ) ∼= ZZp, the additive group of p-adic integers, where p is any prime. Equivalentl...

متن کامل

Pseudo-modularity and Iwasawa Theory

We prove, assuming Greenberg’s conjecture, that the ordinary eigencurve is Gorenstein at an intersection point between the Eisenstein family and the cuspidal locus. As a corollary, we obtain new results on Sharifi’s conjecture. This result is achieved by constructing a universal ordinary pseudodeformation ring and proving an R = T result.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Open Book Series

سال: 2019

ISSN: 2329-907X,2329-9061

DOI: 10.2140/obs.2019.2.137