Explicit Chebyshev Petrov–Galerkin scheme for time-fractional fourth-order uniform Euler–Bernoulli pinned–pinned beam equation

نویسندگان

چکیده

Abstract In this research, a compact combination of Chebyshev polynomials is created and used as spatial basis for the time fractional fourth-order Euler–Bernoulli pinned–pinned beam. The method based on applying Petrov–Galerkin procedure to discretize differential problem into system linear algebraic equations with unknown expansion coefficients. Using efficient Gaussian elimination procedure, we solve obtained matrices particular pattern. L ∞ {L}_{\infty } 2 {L}_{2} norms estimate error bound. Three numerical examples were exhibited verify theoretical analysis efficiency newly developed algorithm.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical scheme for space-time fractional advection-dispersion equation

In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...

متن کامل

High-accuracy alternating segment explicit-implicit method for the fourth-order heat equation

Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...

متن کامل

a numerical scheme for space-time fractional advection-dispersion equation

in this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. we utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. by using bernstein polynomial basis, the problem is transformed in...

متن کامل

A Fourth Order Magnus Scheme for Helmholtz Equation

For wave propagation in a slowly varying waveguide, it is necessary to solve the Helmholtz equation in a domain that is much larger than the typical wavelength. Standard finite difference and finite element methods must resolve the small oscillatory behavior of the wave field and are prohibitively expensive for practical applications. A popular method is to approximate the waveguide by segments...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Engineering

سال: 2023

ISSN: ['2192-8010', '2192-8029']

DOI: https://doi.org/10.1515/nleng-2022-0308