Explicit bound for quadratic Lagrange interpolation constant on triangular finite elements

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Interpolation Errors over Quadratic Nodal Triangular Finite Elements

Interpolation techniques are used to estimate function values and their derivatives at those points for which a numerical solution of any equation is not explicitly evaluated. In particular, the shape functions are used to interpolate a solution (within an element) of a partial differential equation obtained by the finite element method. Mesh generation and quality improvement are often driven ...

متن کامل

Local Interpolation by a Quadratic Lagrange Finite Element in 1d

We analyse the error of interpolation of functions from the space H(a, c) in the nodes a < b < c of a regular quadratic Lagrange finite element in 1D by interpolants from the local function space of this finite element. We show that the order of the error depends on the way in which the mutual positions of nodes a, b, c change as the length of interval [a, c] approaches zero.

متن کامل

On the Lebesgue constant for Lagrange interpolation on equidistant nodes

Properties of the Lebesgue function for Lagrange interpolation on equidistant nodes are investigated. It is proved that the Lebesgue function can be formulated both in terms of a hypergeometric function 2F1 and Jacobi polynomials. Moreover an integral expression of the Lebesgue function is also obtained. Finally, the asymptotic behavior of the Lebesgue constant is studied.

متن کامل

Shock preserving quadratic interpolation for visualization on triangular meshes

Many areas of scientific computing involve modelling real world problems. The visualization of the solution to these problems is an essential aid in the understanding of the phenomenon being modelled. Interpolation schemes that will respect the physical properties of the underlying data are thus needed. One example of respecting this physical nature of the data is to produce values within a spe...

متن کامل

Anisotropic Measures of Third Order Derivatives and the Quadratic Interpolation Error on Triangular Elements

Abstract. The main purpose of this paper is to present a closer look at how the H1and L2-errors for quadratic interpolation on a triangle are determined by the triangle geometry and the anisotropic behavior of the third order derivatives of interpolated functions. We characterize quantitatively the anisotropic behavior of a third order derivative tensor by its orientation and anisotropic ratio....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2018

ISSN: 0096-3003

DOI: 10.1016/j.amc.2017.08.020