Experimental Evaluation of Thermal Conductivity and Other Thermophysical Properties of Nanofluids Based on Functionalized (-OH) Mwcnt Nanoparticles Dispersed in Distilled Water

نویسندگان

چکیده

A possible way to increase thermal conductivity of working fluids, while keeping pressure drop at acceptable levels, is through nanofluids. Nanofluids are nano-sized particles dispersed in conventional fluids. great number materials have potential be used nanoparticles production and then nanofluids; one them Multi-Walled Carbon Nano Tubes (MWCNT). They around 3000 W/mK other as like CuO 76.5 W/mK. Due this fact, MWCNT nanofluids production, aiming heat transfer rate energy systems. In context, the main goal paper evaluate from synthesis experimental measurement nanofluid samples based on functionalized (-OH) nanoparticles. will analyzed with different functionalization degrees (4% wt, 6% 9% wt). addition, it quantified thermophysical properties (dynamic viscosity, specific mass) synthetized So, present work can contribute data that help researches study development According results, maximum increment obtained was 10.65% relation base fluid (water).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental study of the results of adding alumina nanoparticles on viscosity and thermal conductivity of water and ethanol nanofluids

In recent decades, the use of nanofluids has attracted much attention due to its application in various fields such as medical and industries like oil and gas. The combination of nanoparticles with base fluids and its type can produce different results depending on the characteristics of the nanoparticles, one of which is the effect of changes in the viscosity and thermal conductivity of the na...

متن کامل

Thermal Conductivity of Cu and Al-Water Nanofluids

Nanofluids are suspensions of nanoparticles in the base fluids, a new challenge for thermal sciences provided by nanotechnology. In this paper, the tested fluids are prepared by dispersing the Al and Cu into water at three different concentrations such as 500, 1000 and 2000 ppm. Thermal conductivities of these fluids are measured experimentally by thermal property analyzer i.e. KD2 Pro by using...

متن کامل

An Experimental Study on Thermophysical Properties of Multiwalled Carbon Nanotubes (RESEARCH NOTE)

Nanofluids are the heat transfer fluids having remarkable thermal properties. The paper presents the experimental analysis of thermal conductivity, density, specific heat and viscosity of multiwalled carbon nanoparticles dispersed in water at various temperatures and particle concentrations. To examine the forced convection heat transfer of Multiwalled Carbon Nanotubes (MWCNT)-water nanofluid, ...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Thermal Conductivity and Viscosity Measurements of Water-Based Silica Nanofluids

Nanofluids are a new class of thermal vectors potentially able to drastically increase the heat transfer properties of base fluids such as water, glycol and oil. Nanoparticles of various materials, size (<100 nm), shapes and concentrations can be added to the base fluid to enhance the transport properties. In particular, the knowledge of thermal conductivity and viscosity is essential to study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Nanoparticles

سال: 2023

ISSN: ['2169-0510', '2169-0529']

DOI: https://doi.org/10.4236/anp.2023.121004