Experimental and finite element analysis of hybrid fiber reinforced concrete two-way slabs at ultimate limit state

نویسندگان

چکیده

Abstract Concrete is a brittle material that weak in tension and prone to internal microcracking. With the constant demand for improvement concrete’s durability mechanical proprieties, use of fiber reinforcements has shown promising results. The findings this paper are based on test results hybrid reinforced concrete (HFRC) samples simply supported two-way slabs, produced with selected volumetric proportion steel (SF) polypropylene fibers (PPF). A total twenty-one specimens were fabricated. slab tested under flexural loading their response terms strain, deflection, first crack, ultimate failure was determined. dosage SF ranged from 0.7 1.0%, whereas 0.1–0.9% PPF used by volume concrete. It found combination 0.9% 0.1% gave favorable capacity, ductility, cracks. Finite Element Analysis (FEA) proposed HFRC slabs also performed via ABAQUS. outputs numerical modeling showed close agreement experimental Using FEA model, an extensive parametric study done examine effect various parameters including longitudinal reinforcement ratio, compressive strength concrete, cover specimens. model presented outcomes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Strengthening of the Two-way Reinforced Concrete Slabs with High Performance Fiber Reinforced Cement Composites Prefabricated Sheets

Reinforced concrete structures need to be strengthened and retrofitted for various reasons, including errors during design and/or construction, so in most cases strengthening of structural elements is much more economical than rebuilding the structure. Using HPFRCC with tensile stiffening behavior has been developed to strengthen the concrete structures over the recent few years. In this paper,...

متن کامل

Experimental Modal Analysis of Reinforced Concrete Square Slabs

The aim of this paper is to perform experimental modal analysis (EMA) of reinforced concrete (RC) square slabs. EMA is the process of determining the modal parameters (Natural Frequencies, damping factors, modal vectors) of a structure from a set of frequency response functions FRFs (curve fitting). Although, experimental modal analysis (or modal testing) has grown steadily in popularity since ...

متن کامل

Hybrid Fiber Reinforced Concrete Containing Pumice and Metakaolin

Fiber reinforced concrete (FRC) has been widely used due to its advantages over plain concrete such as high energy absorption, post cracking behaviour, flexural and impact strength and arresting shrinkage cracks. But there is a weak zone between fibers and paste in fiber reinforced concretes and this weak zone is full of porosity, especially in hybrid fiber reinforced concretes. So it is necess...

متن کامل

Experimental Investigation of Behavior of Glass Fiber Reinforced Concrete (GFRC)

The paper presents the results of casting and testing of 264 GFRC specimens. The glass fibers were 25 mm long, with the aspect ratio (L/D) ranging between 1250 and 3570. The parameters studied were the ratio (by weight) of fibers to cement, i.e. F/C=0%, 1.5%, 3%, and 4.5%, and the ratio of coarse to fine aggregates (gravel to sand), i.e. G/S=1.1, 0.7 and 0.2. In total, 12 mix designs were selec...

متن کامل

Finite Element Analysis of Reinforced Concrete Column Under Lateral Load

To serve its purpose a structure must be safe against collapse and serviceable in use. Serviceability requires that deflections be adequately small to keep the cracks within tolerable limits. Although the widely followed ACI Code suggests a detailed method of deflection calculation, it often cannot exactly perceive the actual behavior of a structure. For this purpose, finite element analysis, u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SN applied sciences

سال: 2021

ISSN: ['2523-3971', '2523-3963']

DOI: https://doi.org/10.1007/s42452-020-04078-y