Expected Resurgence of Ideals Defining Gorenstein Rings

نویسندگان

چکیده

Building on previous work by the same authors, we show that certain ideals defining Gorenstein rings have expected resurgence and thus satisfy stable Harbourne conjecture. In prime characteristic, can take any radical ideal a ring in regular ring, provided its symbolic powers are given saturations with maximal ideal. Although this property is not suitable for reduction to characteristic p, similar result holds equicharacteristic 0 under additional hypothesis Rees algebra of I Noetherian.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Good Ideals in Gorenstein Local Rings

Let I be an m-primary ideal in a Gorenstein local ring (A,m) with dimA = d, and assume that I contains a parameter ideal Q in A as a reduction. We say that I is a good ideal in A if G = ∑ n≥0 I n/In+1 is a Gorenstein ring with a(G) = 1−d. The associated graded ring G of I is a Gorenstein ring with a(G) = −d if and only if I = Q. Hence good ideals in our sense are good ones next to the parameter...

متن کامل

Gorenstein rings through face rings of manifolds

The face ring of a homology manifold (without boundary) modulo a generic system of parameters is studied. Its socle is computed and it is verified that a particular quotient of this ring is Gorenstein. This fact is used to prove that the sphere g-conjecture implies all enumerative consequences of its far reaching generalization (due to Kalai) to manifolds. A special case of Kalai’s manifold g-c...

متن کامل

Intersection Multiplicities over Gorenstein Rings

LetR be a complete local ring of dimension d over a perfect field of prime characteristic p, and let M be an R-module of finite length and finite projective dimension. S. Dutta showed that the equality limn→∞ `(F n R(M)) pnd = `(M) holds when the ring R is a complete intersection or a Gorenstein ring of dimension at most 3. We construct a module over a Gorenstein ring R of dimension five for wh...

متن کامل

Adjoint ideals and Gorenstein blowups in two-dimensional regular local rings

In this article we investigate when a complete ideal in a twodimensional regular local ring is a multiplier ideal of some ideal with an integral multiplying parameter. In particular, we show that this question is closely connected to the Gorenstein property of the blowup along the ideal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Michigan Mathematical Journal

سال: 2022

ISSN: ['0026-2285', '1945-2365']

DOI: https://doi.org/10.1307/mmj/20206004