Expected Number of Zeros of Random Power Series with Finitely Dependent Gaussian Coefficients

نویسندگان

چکیده

Abstract We are concerned with zeros of random power series coefficients being a stationary, centered, complex Gaussian process. show that the expected number in every smooth domain disk convergence is less than hyperbolic analytic function i.i.d. coefficients. When finitely dependent, i.e., spectral density trigonometric polynomial, we derive precise asymptotics inside radius r centered at origin as tends to convergence, proof which clarify negative contribution stems from density.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real Zeros of Algebraic Polynomials with Dependent Random Coefficients

The expected number of real zeros of polynomials a0+a1x+a2x+ · · · + an−1xn−1 with random coefficients is well studied. For n large and for the normal zero mean independent coefficients, irrespective of the distribution of coefficients, this expected number is known to be asymptotic to (2/π) logn. For the dependent cases studied so far it is shown that this asymptotic value remains O(logn). In ...

متن کامل

The Real Zeros of a Random Polynomial with Dependent Coefficients

Abstract. Mark Kac gave one of the first results analyzing random polynomial zeros. He considered the case of independent standard normal coefficients and was able to show that the expected number of real zeros for a degree n polynomial is on the order of 2 π logn, as n → ∞. Several years later, Sambandham considered two cases with some dependence assumed among the coefficients. The first case ...

متن کامل

Zeros of Dirichlet series with periodic coefficients

Let a = (an)n≥1 be a periodic sequence, Fa(s) the meromorphic continuation of P n≥1 an/n , and Na(σ1, σ2, T ) the number of zeros of Fa(s), counted with their multiplicities, in the rectangle σ1 < Re s < σ2, | Im s| ≤ T . We extend previous results of Laurinčikas, Kaczorowski, Kulas, and Steuding, by showing that if Fa(s) is not of the form P (s)Lχ(s), where P (s) is a Dirichlet polynomial and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2022

ISSN: ['1572-9230', '0894-9840']

DOI: https://doi.org/10.1007/s10959-022-01203-y