Exonuclease domain mutants of yeast DIS3 display genome instability
نویسندگان
چکیده
منابع مشابه
Yeast exonuclease 5 is essential for mitochondrial genome maintenance.
Yeast exonuclease 5 is encoded by the YBR163w (DEM1) gene, and this gene has been renamed EXO5. It is distantly related to the Escherichia coli RecB exonuclease class. Exo5 is localized to the mitochondria, and EXO5 deletions or nuclease-defective EXO5 mutants invariably yield petites, amplifying either the ori3 or ori5 region of the mitochondrial genome. These petites remain unstable and under...
متن کاملYeast mer1 mutants display reduced levels of meiotic recombination.
Mutations at the MER1 locus were identified in a search for meiotic mutants defective in chromosome segregation. mer1 strains show decreased levels of inter- and intrachromosomal meiotic recombination and produce inviable spores. The MER1 gene was cloned by complementation of the spore inviability phenotype. Strains carrying disruptions of the MER1 gene are mitotically viable. The epistatic rel...
متن کاملIncreased Genome Instability in Aging Yeast
In the September 26 issue of Science, McMurray and Gottschling (2003) report that aged yeast cells display high rates of loss of heterozygosity. Furthermore, they show that this reflects an impaired ability to correctly detect and repair DNA double-strand breaks. These results provide insights into how aging can engender genomic instability in eukaryotic cells.
متن کاملGenome instability in rad54 mutants of Saccharomyces cerevisiae.
The RAD54 gene of Saccharomyces cerevisiae encodes a conserved dsDNA-dependent ATPase of the Swi2/Snf2 family with a specialized function during recombinational DNA repair. Here we analyzed the consequences of the loss of Rad54 function in vegetative (mitotic) cells. Mutants in RAD54 exhibited drastically reduced rates of spontaneous intragenic recombination but were proficient for spontaneous ...
متن کاملSuppression of spontaneous genome rearrangements in yeast DNA helicase mutants.
Saccharomyces cerevisiae mutants lacking two of the three DNA helicases Sgs1, Srs2, and Rrm3 exhibit slow growth that is suppressed by disrupting homologous recombination. Cells lacking Sgs1 and Rrm3 accumulate gross-chromosomal rearrangements (GCRs) that are suppressed by the DNA damage checkpoint and by homologous recombination-defective mutations. In contrast, rrm3, srs2, and srs2 rrm3 mutan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nucleus
سال: 2019
ISSN: 1949-1034,1949-1042
DOI: 10.1080/19491034.2019.1578600