Existential arithmetization of Diophantine equations
نویسندگان
چکیده
منابع مشابه
Diophantine approximation and Diophantine equations
The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...
متن کاملSolvability of Diophantine Equations
Attila Bérczes (University of Debrecen): On arithmetic properties of solutions of norm form equations. Abstract. Let α be an algebraic number of degree n and K := Q(α). Consider the norm form equation NK/Q(x0 + x1α+ x2α + . . .+ xn−1α) = b in x0, . . . , xn−1 ∈ Z. (1) Let H denote the solution set of (1). Arranging the elements of H in an |H| × n array H, one may ask at least two natural questi...
متن کاملFamilies of Diophantine equations
This is a report on the recent work by Claude Levesque and the author on families of Diophantine equations. This joint work started in 2010 in Rio, and this is still work in progress. The lecture in Lahore on March 11, 2013 was mainly devoted to a survey of results on Diophantine equations, with the last part dealing with some recent results. Here we describe the content of the recent joint pap...
متن کاملDiophantine Approximations, Diophantine Equations, Transcendence and Applications
This article centres around the contributions of the author and therefore, it is confined to topics where the author has worked. Between these topics there are connections and we explain them by a result of Liouville in 1844 that for an algebraic number α of degree n ≥ 2, there exists c > 0 depending only on α such that | α− p q |> c qn for all rational numbers p q with q > 0. This inequality i...
متن کاملDiophantine Equations Related with Linear Binary Recurrences
In this paper we find all solutions of four kinds of the Diophantine equations begin{equation*} ~x^{2}pm V_{t}xy-y^{2}pm x=0text{ and}~x^{2}pm V_{t}xy-y^{2}pm y=0, end{equation*}% for an odd number $t$, and, begin{equation*} ~x^{2}pm V_{t}xy+y^{2}-x=0text{ and}text{ }x^{2}pm V_{t}xy+y^{2}-y=0, end{equation*}% for an even number $t$, where $V_{n}$ is a generalized Lucas number. This pape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Pure and Applied Logic
سال: 2009
ISSN: 0168-0072
DOI: 10.1016/j.apal.2008.09.009