Existence Results for Fractional Choquard Equations with Critical or Supercritical Growth

نویسندگان

چکیده

Abstract In this paper, we study the following fractional Choquard equation with critical or supercritical growth $$\begin{aligned} \ (-\Delta )^su+V(x)u=f(x,u)+\lambda \left[ |x|^{-\mu }*|u|^p\right] p|u|^{p-2}u, \quad x \in {\mathbb {R}}^N, \end{aligned}$$ ( - Δ ) s u + V x = f , λ | μ ∗ p 2 ∈ R N where $$0<s<1$$ 0 < 1 , $$(-\Delta )^s$$ denotes Laplacian of order s $$N>2s$$ > $$0<\mu <2s$$ and $$p\ge 2_{\mu ,s}^*:=\frac{2N-\mu }{N-2s}$$ ≥ : which is exponent in sense Hardy-Littlewood-Sobolev inequality. Under some suitable conditions, prove that admits a nontrivial solution for small $$\lambda >0$$ by variational methods, extends results Bhattarai J. Differ. Equ. 263 3197–3229 (2017).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence results for hybrid fractional differential equations with Hilfer fractional derivative

This paper investigates the solvability, existence and uniqueness of solutions for a class of nonlinear fractional hybrid differential equations with Hilfer fractional derivative in a weighted normed space. The main result is proved by means of a fixed point theorem due to Dhage. An example to illustrate the results is included.

متن کامل

Some New Existence, Uniqueness and Convergence Results for Fractional Volterra-Fredholm Integro-Differential Equations

This paper demonstrates a study on some significant latest innovations in the approximated techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To this aim, the study uses the modified Adomian decomposition method (MADM) and the modified variational iteration method (MVIM). A wider applicability of these techniques are based on thei...

متن کامل

Nonexistence Results for Nonlocal Equations with Critical and Supercritical Nonlinearities

We prove nonexistence of nontrivial bounded solutions to some nonlinear problems involving nonlocal operators of the form Lu(x) = − ∑ aij∂iju+ PV ∫ Rn (u(x)− u(x+ y))K(y)dy. These operators are infinitesimal generators of symmetric Lévy processes. Our results apply to even kernels K satisfying that K(y)|y| is nondecreasing along rays from the origin, for some σ ∈ (0, 2) in case aij ≡ 0 and for ...

متن کامل

Non-existence and uniqueness results for supercritical semilinear elliptic equations

Non-existence and uniqueness results are proved for several local and non-local supercritical bifurcation problems involving a semilinear elliptic equation depending on a parameter. The domain is star-shaped and such that a Poincaré inequality holds but no other symmetry assumption is required. Uniqueness holds when the bifurcation parameter is in a certain range. Our approach can be seen, in s...

متن کامل

The existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions

In this paper, we study a coupled system of nonlinear fractional differential equations with multi-point boundary condi- tions. The differential operator is taken in the Riemann-Liouville sense. Applying the Schauder fixed-point theorem and the contrac- tion mapping principle, two existence results are obtained for the following system D^{alpha}_{0+}x(t)=fleft(t,y(t),D^{p}_{0+}y(t)right), t in (0,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Mathematical Physics

سال: 2022

ISSN: ['1776-0852', '1402-9251']

DOI: https://doi.org/10.1007/s44198-022-00065-6