Existence of Two Periodic Solutions to General Anisotropic Euler-Lagrange Equations

نویسندگان

چکیده

This paper is concerned with the following Euler-Lagrange system \[ \begin{cases} \frac{d}{dt} \mathcal{L}_v(t,u(t),\dot{u}(t)) = \mathcal{L}_x(t,u(t),\dot{u}(t)) \quad \textrm{for a.e. $t \in [-T,T]$}, \\ u(-T) u(T), \mathcal{L}_v(-T,u(-T),\dot{u}(-T)) \mathcal{L}_v(T,u(T),\dot{u}(T)), \end{cases} \] where Lagrangian given by $\mathcal{L} F(t,x,v) + V(t,x) \langle f(t), x \rangle$, growth conditions are determined an anisotropic G-function and some geometric at infinity. We consider two cases: without forcing term $f$. Using a general version of mountain pass theorem Ekeland's variational principle we prove existence least nontrivial periodic solutions in Orlicz-Sobolev space.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some existence results on periodic solutions of Euler–Lagrange equations in an Orlicz–Sobolev space setting

In this paper we consider the problem of finding periodic solutions of certain Euler-Lagrange equations. We employ the direct method of the calculus of variations, i.e. we obtain solutions minimizing certain functional I. We give conditions which ensure that I is finitely defined and differentiable on certain subsets of Orlicz-Sobolev spaces W L associated to an N -function Φ. We show that, in ...

متن کامل

Periodic Solutions of Lagrange Equations

Nontrivial periodic solutions of Lagrange Equations are investigated. Sublinear and superlinear nonlinearity are included. Convexity assumptions are significiently relaxed. The method used is the duality developed by the authors.

متن کامل

Euler-lagrange Equations

. Consider a mechanical system consisting of N particles in R subject to some forces. Let xi ∈ R denote the position vector of the ith particle. Then all possible positions of the system are described by N -tuples (x1, . . . , xN ) ∈ (R) . The space (R) is an example of a configuration space. The time evolution of the system is described by a curve (x1(t), . . . , xN (t)) in (R) and is governed...

متن کامل

The Reduced Euler-Lagrange Equations

Marsden and Scheurle [1993] studied Lagrangian reduction in the context of momentum map constraints—here meaning the reduction of the standard Euler-Lagrange system restricted to a level set of a momentum map. This provides a Lagrangian parallel to the reduction of symplectic manifolds. The present paper studies the Lagrangian parallel of Poisson reduction for Hamiltonian systems. For the reduc...

متن کامل

Global existence of smooth solutions to two-dimensional compressible isentropic Euler equations for Chaplygin gases

In this paper we investigate the two-dimensional compressible isentropic Euler equations for Chaplygin gases. Under the assumption that the initial data is close to a constant state and the vorticity of the initial velocity vanishes, we prove the global existence of the smooth solution to the Cauchy problem for two-dimensional flow of Chaplygin gases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2021

ISSN: ['1027-5487', '2224-6851']

DOI: https://doi.org/10.11650/tjm/200902