Existence of supersingular reduction for families of $K3$ surfaces with large Picard number in positive characteristic

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Picard Lattices of Families of K3 Surfaces

Picard Lattices of Families of K3 Surfaces bysarah-marie belcastro Chair: Igor Dolgachev It is a nontrivial problem to determine the Picard Lattice of a given surface; theobject of this thesis is to compute the Picard Lattices of M. Reid’s list of 95 fami-lies of Gorenstein K3 surfaces which occur as hypersurfaces in weighted projectivespace. Reid’s list arises in many problems;...

متن کامل

Unirationality of Certain Supersingular K3 Surfaces in Characteristic

We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.

متن کامل

K3 surfaces over number fields with geometric Picard number one

A long-standing question in the theory of rational points of algebraic surfaces is whether a K3 surface X over a number field K acquires a Zariski-dense set of L-rational points over some finite extension L/K. In this case, we say X has potential density of rational points. In case XC has Picard rank greater than 1, Bogomolov and Tschinkel [2] have shown in many cases that X has potential densi...

متن کامل

Cox rings of K3 surfaces with Picard number two

We study presentations of Cox rings of K3 surfaces of Picard number two. In particular we consider the Cox rings of classical examples of K3 surfaces, such as quartic surfaces containing a line and doubly elliptic K3 surfaces.

متن کامل

Supersingular K3 Surfaces in Odd Characteristic and Sextic Double Planes

We show that every supersingular K3 surface is birational to a double cover of a projective plane.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Hiroshima Mathematical Journal

سال: 2018

ISSN: 0018-2079

DOI: 10.32917/hmj/1520478024