Existence of Solutions for P-laplace Equation with Critical Exponent
نویسندگان
چکیده
منابع مشابه
Existence of solutions for elliptic systems with critical Sobolev exponent ∗
We establish conditions for existence and for nonexistence of nontrivial solutions to an elliptic system of partial differential equations. This system is of gradient type and has a nonlinearity with critical growth.
متن کاملEXISTENCE AND CONCENTRATION OF SOLUTIONS FOR A p-LAPLACE EQUATION WITH POTENTIALS IN R
We study the p-Laplace equation with Potentials − div(|∇u|p−2∇u) + λV (x)|u|p−2u = |u|q−2u, u ∈ W 1,p(RN ), x ∈ RN where 2 ≤ p, p < q < p∗. Using a concentrationcompactness principle from critical point theory, we obtain existence, multiplicity solutions, and concentration of solutions.
متن کاملExistence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in R
Mountain pass in a suitable Orlicz space is employed to prove the existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in RN . These equations contain strongly singular nonlinearities which include derivatives of the second order. Such equations have been studied as models of several physical phenomena. The nonlinearity here corresponds to the superf...
متن کاملEXISTENCE OF SOLUTIONS TO A PARABOLIC p(x)-LAPLACE EQUATION WITH CONVECTION TERM VIA L∞ ESTIMATES
This article is devoted to the study of the existence of weak solutions to an initial and boundary value problem for a parabolic p(x)-Laplace equation with convection term. Using the De Giorgi iteration technique, the authors establish the critical a priori L∞-estimates and thus prove the existence of weak solutions.
متن کاملMULTIPLE SOLUTIONS FOR THE p−LAPLACE OPERATOR WITH CRITICAL GROWTH
In this paper we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation −∆pu = |u| ∗ u + λf(x, u) in a smooth bounded domain Ω of R with homogeneous Dirichlet boundary conditions on ∂Ω, where p = Np/(N − p) is the critical Sobolev exponent and ∆pu = div(|∇u|∇u) is the p−laplacian. The proof is based on variational arguments and the classical con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physics Procedia
سال: 2012
ISSN: 1875-3892
DOI: 10.1016/j.phpro.2012.05.321