Existence of solutions for fractional impulsive neutral functional infinite delay integrodifferential equations with nonlocal conditions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Mild Solutions to Fractional Integrodifferential Equations of Neutral Type with Infinite Delay

We study the solvability of the fractional integrodifferential equations of neutral type with infinite delay in a Banach space X. An existence result of mild solutions to such problems is obtained under the conditions in respect of Kuratowski's measure of noncompactness. As an application of the abstract result, we show the existence of solutions for an integrodifferential equation.

متن کامل

Existence of Mild Solutions for Nonlocal Cauchy Problem for Fractional Neutral Evolution Equations with Infinite Delay

In this article, we study the existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay. The results are obtained by using the Banach contraction principle. Finally, an application is given to illustrate the theory. Full text

متن کامل

Existence of Extremal Solutions for Impulsive Delay Fuzzy Integrodifferential Equations in $n$-dimensional Fuzzy Vector Space

In this paper, we study the existence of extremal solutions forimpulsive delay fuzzy integrodifferential equations in$n$-dimensional fuzzy vector space, by using monotone method. Weshow that obtained result is an extension of the result ofRodr'{i}guez-L'{o}pez cite{rod2} to impulsive delay fuzzyintegrodifferential equations in $n$-dimensional fuzzy vector space.

متن کامل

Zuomao Yan EXISTENCE OF SOLUTIONS FOR SOME NONLINEAR DELAY INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL INITIAL CONDITIONS

The main purpose of this paper is the existence of mild solutions for a class of first-order nonlinear delay integrodifferential equations with nonlocal initial conditions in Banach spaces. We show that the solutions are given by the application of the theory of resolvent operators and the Sadovskii’s fixed point theorem. An example is presented in the end to show the applications of the obtain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Sciences and Applications

سال: 2012

ISSN: 2008-1901

DOI: 10.22436/jnsa.005.04.03