Existence of periodic solutions with prescribed minimal period of a 2nth-order discrete system

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of periodic solutions for a 2nth-order difference equation involving p-Laplacian∗

By using the critical point theory, the existence of periodic solutions for a 2nth-order nonlinear difference equation containing both advance and retardation involving p-Laplacian is obtained. The main approaches used in our paper are variational techniques and the Saddle Point Theorem. The problem is to solve the existence of periodic solutions for a 2nth-order p-Laplacian difference equation...

متن کامل

EXISTENCE OF PERIODIC SOLUTIONS FOR 2nTH-ORDER NONLINEAR p-LAPLACIAN DIFFERENCE EQUATIONS

By using the critical point theory, the existence of periodic solutions for 2nth-order nonlinear pLaplacian difference equations is obtained. The main approaches used in our paper are variational techniques and the Saddle Point theorem. The problem is to solve the existence of periodic solutions for 2nth-order p-Laplacian difference equations. The results obtained successfully generalize and co...

متن کامل

Existence of Multiple Periodic Solutions for Second-order Discrete Hamiltonian Systems with Partially Periodic Potentials

In this article, we use critical point theory to obtain multiple periodic solutions for second-order discrete Hamiltonian systems, when the nonlinearity is partially periodic and its gradient is linearly and sublinearly bounded.

متن کامل

Multiple Periodic Solutions for a Fourth-order Discrete Hamiltonian System

By means of a three critical points theorem proposed by Brezis and Nirenberg and a general version of Mountain Pass Theorem, we obtain some multiplicity results for periodic solutions of a fourth-order discrete Hamiltonian system ∆u(t− 2) +∇F (t, u(t)) = 0, for all t ∈ Z.

متن کامل

On the existence of minimal periodic solutions for a class of second-order Hamiltonian systems

Multiplicity results for an eigenvalue second-order Hamiltonian system are investigated. Using suitable critical points arguments, the existence of an exactly determined open interval of positive eigenvalues for which the system admits at least three distinct periodic solutions is established. Moreover, when the energy functional related to the Hamiltonian system is not coercive, an existence r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2019

ISSN: 2391-5455

DOI: 10.1515/math-2019-0102