Existence of Multiple Solutions for a Class of Biharmonic Equations
نویسندگان
چکیده
منابع مشابه
Existence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملExistence and uniqueness of weak solutions for a class of nonlinear divergence type diffusion equations
In this paper, we study the Neumann boundary value problem of a class of nonlinear divergence type diffusion equations. By a priori estimates, difference and variation techniques, we establish the existence and uniqueness of weak solutions of this problem.
متن کاملExistence of Multiple Solutions for a Quasilinear Biharmonic Equation
Using three critical points theorems, we prove the existence of at least three solutions for a quasilinear biharmonic equation.
متن کاملEXISTENCE OF MULTIPLE SOLUTIONS FOR A p(x)-BIHARMONIC EQUATION
In this article, we show the existence of at least three solutions to a Navier boundary problem involving the p(x)-biharmonic operator. The technical approach is mainly base on a three critical points theorem by Ricceri.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Dynamics in Nature and Society
سال: 2013
ISSN: 1026-0226,1607-887X
DOI: 10.1155/2013/809262