Existence of multi-solitons for the focusing Logarithmic Non-Linear Schrödinger Equation

نویسندگان

چکیده

Abstract We consider the logarithmic Schrodinger equation (logNLS) in focusing regime. For this equation, Gaussian initial data remains Gaussian. In particular, Gausson - a time-independent function is an orbitally stable solution. paper, we construct multi-solitons (or multi-Gaussons) for logNLS, with estimates H 1 ? F ( ) . also solutions to logNLS behaving (in L 2 like sum of N different speeds (which call multi-gaussian). both cases, convergence (as t ? ? faster than exponential. prove rigidity result on these constructed multi-gaussians and multi-solitons, showing that they are only ones such convergence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussons: Solitons of the Logarithmic Schrodinqer Equation

Gaussons: Solitons of the logarithmic Schrodinger equation. Iwo Bialynicki-Birula (Institute of Theoretical Physics, Warsaw University, Warsaw, Poland and Department of Physics, University of Pittsburgh, Pittsburgh, U.S.A.); and J erzy Mycielski (Institute of Theoretical Physics, Warsaw University, Warsaw, Poland). Physica Scripta (Sweden) 20,539-544,1979. Properties of the Schrodinger equation...

متن کامل

Stochastic Acceleration of Solitons for the Nonlinear Schrödinger Equation

The effective dynamics of solitons for the generalized nonlinear Schrödinger equation in a random potential is rigorously studied. It is shown that when the external potential varies slowly in space compared to the size of the soliton, the dynamics of the center of the soliton is almost surely described by Hamilton’s equations for a classical particle in the random potential, plus error terms d...

متن کامل

Direct perturbation theory for solitons of the derivative nonlinear Schrödinger equation and the modified nonlinear Schrödinger equation.

A direct perturbation theory for solitons of the derivative nonlinear Schrödinger (DNLS) equation is developed based on a closure of eigenfunctions of the linearized DNLS equation around a one-soliton solution. The slow evolution of soliton parameters and the perturbation-induced radiation are obtained. Under the known simple gaugelike transformation, these results are transformed into those fo...

متن کامل

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire

سال: 2021

ISSN: ['0294-1449', '1873-1430']

DOI: https://doi.org/10.1016/j.anihpc.2020.09.002