Existence of least area planes in hyperbolic 3-space with co-compact metric

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Existence of Least Area Surfaces in 3-manifolds

This paper presents a new and unified approach to the existence theorems for least area surfaces in 3-manifolds. Introduction. A surface F smoothly embedded or immersed in a Riemannian manifold M is minimal if it has mean curvature zero at all points. It is a least area surface in a class of surfaces if it has finite area which realizes the infimum of all possible areas for surfaces in this cla...

متن کامل

Geodesic planes in hyperbolic 3-manifolds

In this talk we discuss the possible closures of geodesic planes in a hyperbolic 3-manifold M. When M has finite volume Shah and Ratner (independently) showed that a very strong rigidity phenomenon holds, and in particular such closures are always properly immersed submanifolds of M with finite area. Manifolds with infinite volume, however, are far less understood and are the main subject of th...

متن کامل

Compact Non-orientable Hyperbolic Surfaces with an Extremal Metric Disc

The size of a metric disc embedded in a compact non-orientable hyperbolic surface is bounded by some constant depending only on the genus g ≥ 3. We show that a surface of genus greater than six contains at most one metric disc of the largest radius. For the case g = 3, we carry out an exhaustive study of all the extremal surfaces, finding the location of every extremal disc inside them.

متن کامل

Manifolds With Many Hyperbolic Planes

We construct examples of complete Riemannian manifolds having the property that every geodesic lies in a totally geodesic hyperbolic plane. Despite the abundance of totally geodesic hyperbolic planes, these examples are not locally homogenous.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 2004

ISSN: 0040-9383

DOI: 10.1016/j.top.2003.10.006