EXISTENCE CONDITIONS OF THE OPTIMAL STOPPING TIME : THE CASES OF GEOMETRIC BROWNIAN MOTION AND ARITHMETIC BROWNIAN MOTION
نویسندگان
چکیده
منابع مشابه
Existence Conditions of the Optimal Stopping Time: the Cases of Geometric Brownian Motion and Arithmetic Brownian Motion
A type of optimal investment problem can be regarded as an optimal stopping problem in the field of applied stochastic analysis. This study derives the existence conditions of the optimal stopping time when the stochastic process is a geometric Brownian motion or an arithmetic Brownian motion. The conditions concern the intrinsic value function and are natural extensions of the certainty case. ...
متن کاملExistence and Measurability of the Solution of the Stochastic Differential Equations Driven by Fractional Brownian Motion
متن کامل
Brownian Motion: The Link Between Probability and Mathematical Analysis
This article has no abstract.
متن کاملSimulating Brownian motion ( BM ) and geometric Brownian
2) and 3) together can be summarized by: If t0 = 0 < t1 < t2 < · · · < tk, then the increment rvs B(ti) − B(ti−1), i ∈ {1, . . . k}, are independent with B(ti) − B(ti−1) ∼ N(0, ti − ti−1) (normal with mean 0 and variance ti − ti−1). In particular, B(ti) − B(ti−1) is independent of B(ti−1) = B(ti−1)−B(0). If we only wish to simulate B(t) at one fixed value t, then we need only generate a unit no...
متن کامل1 Geometric Brownian motion
where X(t) = σB(t) + μt is BM with drift and S(0) = S0 > 0 is the intial value. We view S(t) as the price per share at time t of a risky asset such as stock. Taking logarithms yields back the BM; X(t) = ln(S(t)/S0) = ln(S(t))− ln(S0). ln(S(t)) = ln(S0) +X(t) is normal with mean μt + ln(S0), and variance σ2t; thus, for each t, S(t) has a lognormal distribution. As we will see in Section 1.4: let...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Operations Research Society of Japan
سال: 2004
ISSN: 0453-4514,2188-8299
DOI: 10.15807/jorsj.47.145