Existence and stability of the periodic orbits induced by grazing bifurcation in a cantilever beam system with single rigid impacting constraint
نویسندگان
چکیده
Grazing, which can induce many nonclassical bifurcations, is a special dynamic phenomenon in some non-smooth dynamical systems such as vibro-impact with clearance. In this paper, the existence and stability of periodic orbits induced by grazing bifurcation cantilever beam system impacts are uncovered. Firstly, Poincaré mapping obtained adopting discontinuous method. Then, means shooting method, determined, followed acquisition Jacobian matrix case non-impact subsequently. addition, for various impacting patterns, combination inhomogeneous equations inequations to determine period after grazing, criterion grazing-induced given. Numerical results verify effectiveness theoretical analysis. What more, we also give conjecture about relationship between eigenvalues type when imaginary numbers.
منابع مشابه
a study of the fifth child and ben in the world by doris lessing in the light of julia kristevas psychoanalytic concepts
این مطالعه به بررسی عوامل روانشناختی کریستوادردو رمان دوربس لسینگ،فرزندبنجم و بن دردنیای واقعی می بردازد.موفقیت یا شکست کاراکترهادر تکمیل شکست تتیزی یه کمک بدر وهم از مهم ترین دغدغه محقق می باشد.به بررسی تحلیل روانشناختی تمامی کاراکترها خصوصا بن برداخته و به دنبال نشانه هایی از جامعه شیشه ای کریستوا می باشد.
15 صفحه اولstability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
Existence and Stability of Periodic orbits of Periodic Difference Equations with Delays
In this paper, we investigate the existence and stability of periodic orbits of the p-periodic difference equation with delays xn = f(n− 1, xn−k). We show that the periodic orbits of this equation depend on the periodic orbits of p autonomous equations when p divides k. When p is not a divisor of k, the periodic orbits depend on the periodic orbits of gcd(p, k) nonautonomous p gcd(p,k) periodic...
متن کاملOn the Bifurcation of Periodic Orbits
In 1980, I visited IMPA and J. Sotomayor asked me to " explain " Dulac's article on limit cycles. Then Mauricio M. Peixoto explained me his interest in this question in relation with his famous article on structural stability. This was for me the beginning of a fantastic experience with the world of differential equations. The opportunity of Mauricio's 80 th birthday allows me to express him al...
متن کاملDegenerate periodic orbits and homoclinic torus bifurcation.
A one-parameter family of periodic orbits with frequency omega and energy E of an autonomous Hamiltonian system is degenerate when E'(omega) = 0. In this paper, new features of the nonlinear bifurcation near this degeneracy are identified. A new normal form is found where the coefficient of the nonlinear term is determined by the curvature of the energy-frequency map. An important property of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Nonlinear Science and Numerical Simulation
سال: 2023
ISSN: ['1878-7274', '1007-5704']
DOI: https://doi.org/10.1016/j.cnsns.2023.107235