Exceptional solutions of n-th order periodic linear differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximately $n$-order linear differential equations

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

متن کامل

Almost periodic solutions of N-th order neutral differential difference equations with piecewise constant arguments

In this paper, we study the existence of almost periodic solutions of neutral differential difference equations with piecewise constant arguments via difference equation methods.

متن کامل

PERIODIC SOLUTIONS FOR n-TH ORDER DELAY DIFFERENTIAL EQUATIONS WITH DAMPING TERMS

where n is a positive integer, s ≤ n − 1 a positive integer, bi(i = 1, · · · , s) are constants and k > 1 is an integer, f ∈ C(R,R) for ∀x ∈ R, p ∈ C(R,R) with p(t+ T ) = p(t). In recent years, some researchers used the coincidence degree theory of Mawhin to study the existence of periodic solutions of first, second or third order differential equations [5, 6], [9][15]–[19], [22, 23], [25, 26]....

متن کامل

approximately n-order linear differential equations

we prove the generalized hyers--ulam stability  of n--th order linear differential equation of the form $y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x)$, with condition that there exists a non--zero solution of corresponding homogeneous equation. our main results extend and improve the corresponding results obtained by many authors.

متن کامل

ON THE PERIODIC SOLUTIONS OF A CLASS OF nTH ORDER NONLINEAR DIFFERENTIAL EQUATIONS *

The nth order differential equation x + c (t )x + ƒ( t,x) = e(t),n>3 is considered. Using the Leray-Schauder principle, it is shown that under certain conditions on the functions involved, this equation possesses a periodic solution.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex Variables, Theory and Application: An International Journal

سال: 1997

ISSN: 0278-1077,1563-5066

DOI: 10.1080/17476939708815033