Examples of rank 3 product action transitive decompositions
نویسندگان
چکیده
منابع مشابه
Examples of rank 3 product action transitive decompositions
A transitive decomposition is a pair (Γ,P) where Γ is a graph and P is a partition of the arc set of Γ such that there is a subgroup of automorphisms of Γ which leaves P invariant and transitively permutes the parts in P. In an earlier paper we gave a characterisation of G-transitive decompositions where Γ is the graph product Km×Km and G is a rank 3 group of product action type. This character...
متن کاملTransitive decompositions of graph products: rank 3 grid type
A transitive decomposition is a pair ðG;PÞ where G is a graph and P is a partition of the arc set of G, such that there exists a group of automorphisms of G which leaves P invariant and transitively permutes the parts in P. This paper concerns transitive decompositions where the group is a primitive rank 3 group of ‘grid’ type. The graphs G in this case are either products or Cartesian products...
متن کاملProduct constructions for transitive decompositions of graphs
A decomposition of a graph is a partition of the edge set, giving a set of subgraphs. A transitive decomposition is a decomposition which is highly symmetrical, in the sense that the subgraphs are preserved and transitively permuted by a group of automorphisms of the graph. This paper describes some ‘product’ constructions for transitive decompositions of graphs, and shows how these may be used...
متن کاملTransitive decompositions of graphs
A decomposition of a graph is a partition of the edge set. One can also look at partitions of the arc set but in this talk we restrict our attention to edges. If each part of the decomposition is a spanning subgraph then we call the decomposition a factorisation and the parts are called factors. Decompositions are especially interesting when the subgraphs induced by each part are pairwise isomo...
متن کاملProduct of normal edge-transitive Cayley graphs
For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Designs, Codes and Cryptography
سال: 2007
ISSN: 0925-1022,1573-7586
DOI: 10.1007/s10623-007-9151-9