Examples of cohomology manifolds which are not homologically locally connected
نویسندگان
چکیده
منابع مشابه
Curvature Homogeneous Pseudo-riemannian Manifolds Which Are Not Locally Homogeneous
We construct a family of balanced signature pseudo-Riemannian manifolds, which arise as hypersurfaces in flat space, that are curvature homogeneous, that are modeled on a symmetric space, and that are not locally homogeneous.
متن کاملExamples of singular normal complex spaces which are topological manifolds.
In case V is irreducible with singular curve C, we cannot write every oeH3(W V) as a tube. Indeed, oa = 6C4 and C4 Will meet C in a finite number of points. The trouble is similar to the above and may be overcome as follows: Let DC V be a curve meeting C transversely at a finite number of points pi,...pt. For simplicity, assume t = 1, p = pi, and let B be a small ball around p in W. We may assu...
متن کاملSome Rational Maps Whose Julia Sets Are Not Locally Connected
We describe examples of rational maps which are not topologically conjugate to a polynomial and whose Julia sets are connected but not locally connected. Introduction and motivations The dynamics of a rational map f acting on Ĉ is concentrated on its Julia set which is (by definition) the minimal compact set invariant by f and f−1 containing at least three points. The question of local connecti...
متن کاملLattices on simplicial partitions which are not simply connected
In this paper, (d + 1)-pencil lattices on simplicial partitions in Rd, which are not simply connected, are studied. It is shown, how the fact that a partition is not simply connected can be used to increase the flexibility of a lattice. A local modification algorithm is developed also to deal with slight partition topology changes that may appear afterwards a lattice has already been constructed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 2008
ISSN: 0166-8641
DOI: 10.1016/j.topol.2008.02.002