Exact solutions of the Rayleigh–Stokes problem for a heated generalized second grade fluid in a porous half-space
نویسندگان
چکیده
منابع مشابه
Exact Solutions of Rayleigh-Stokes Problem for Heated Generalized Maxwell Fluid in a Porous Half-Space
The Rayleigh-Stokes problem for a generalized Maxwell fluid in a porous half-space with a heated flat plate is investigated. For the description of such a viscoelastic fluid, a fractional calculus approach in the constitutive relationship model is used. By using the Fourier sine transform and the fractional Laplace transform, exact solutions of the velocity and the temperature are obtained. Som...
متن کاملExact solutions for the flow of a generalized second grade due to a Longitudinal quadratic time-dependent shear stress
متن کامل
EXACT SOLUTIONS FOR FLOW OF A SISKO FLUID IN PIPE
By means of He's homotopy perturbation method (HPM) an approximate solution of velocity eld is derived for the ow in straight pipes of non-Newtonian uid obeying the Sisko model. The nonlinear equations governing the ow in pipe are for- mulated and analyzed, using homotopy perturbation method due to He. Furthermore, the obtained solutions for velocity eld is graphically sketched...
متن کاملexact solutions for the flow of a generalized second grade due to a longitudinal quadratic time-dependent shear stress
متن کامل
Numerical treatment for nonlinear steady flow of a third grade fluid in a porous half space by neural networks optimized
In this paper, steady flow of a third-grade fluid in a porous half space has been considered. This problem is a nonlinear two-point boundary value problem (BVP) on semi-infinite interval. The solution for this problem is given by a numerical method based on the feed-forward artificial neural network model using radial basis activation functions trained with an interior point method. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2009
ISSN: 0307-904X
DOI: 10.1016/j.apm.2007.11.015