Exact results on high-dimensional linear regression via statistical physics
نویسندگان
چکیده
منابع مشابه
Pivotal Estimation in High-dimensional Regression via Linear Programming
We propose a new method of estimation in high-dimensional linear regression model. It allows for very weak distributional assumptions including heteroscedasticity, and does not require the knowledge of the variance of random errors. The method is based on linear programming only, so that its numerical implementation is faster than for previously known techniques using conic programs, and it all...
متن کاملRobust High-Dimensional Linear Regression
The effectiveness of supervised learning techniques has made them ubiquitous in research and practice. In high-dimensional settings, supervised learning commonly relies on dimensionality reduction to improve performance and identify the most important factors in predicting outcomes. However, the economic importance of learning has made it a natural target for adversarial manipulation of trainin...
متن کاملAccuracy Assessment for High - Dimensional Linear Regression
This paper considers point and interval estimation of the lq loss of an estimator in high-dimensional linear regression with random design. We establish the minimax rate for estimating the lq loss and the minimax expected length of confidence intervals for the lq loss of rate-optimal estimators of the regression vector, including commonly used estimators such as Lasso, scaled Lasso, square-root...
متن کاملElementary Estimators for High-Dimensional Linear Regression
We consider the problem of structurally constrained high-dimensional linear regression. This has attracted considerable attention over the last decade, with state of the art statistical estimators based on solving regularized convex programs. While these typically non-smooth convex programs can be solved by the state of the art optimization methods in polynomial time, scaling them to very large...
متن کاملMultiple testing in high-dimensional linear regression
In many real-world statistical problems, we observe a large number of potentially explanatory variables of which a majority may be irrelevant. For this type of problem, controlling the false discovery rate (FDR) guarantees that most of the discoveries are truly explanatory and thus replicable. In this talk, we propose a new method named SLOPE to control the FDR in sparse high-dimensional linear...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2021
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.103.042142