Exact and efficient discrete random walk method for time-dependent two-dimensional environments
نویسندگان
چکیده
منابع مشابه
Title: Exact and efficient discrete random walk method for time-dependent two-dimensional environments
All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not ...
متن کاملExact and efficient discrete random walk method for time-dependent two-dimensional environments.
We present an exact method for speeding up random walk in two-dimensional complicated lattice environments. To this end, we derive the discrete two-dimensional probability distribution function for a diffusing particle starting at the center of a square of linear size s. This is used to propagate random walkers from the center of the square to sites which are nearest neighbors to its perimeter ...
متن کاملTwo-dimensional quantum random walk
We analyze several families of two-dimensional quantum random walks. The feasible region (the region where probabilities do not decay exponentially with time) grows linearly with time, as is the case with one-dimensional QRW. The limiting shape of the feasible region is, however, quite different. The limit region turns out to be an algebraic set, which we characterize as the rational image of a...
متن کاملOne-dimensional discrete-time quantum walks on random environments
We consider discrete-time nearest-neighbor quantum walks on random environments in one dimension. Using the method based on a path counting, we present both quenched and annealed weak limit theorems for the quantum walk.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2002
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.66.066706