Exact analytical solutions of the fractional biological population model, fractional EW and modified EW equations
نویسندگان
چکیده
منابع مشابه
Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations
The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...
متن کاملAnalytical solutions for the fractional Fisher's equation
In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...
متن کاملExact and Approximate Solutions of Fractional Diffusion Equations with Fractional Reaction Terms
In this paper, we consider fractional reaction-diffusion equations with linear and nonlinear fractional reaction terms in a semi-infinite domain. Using q-Homotopy Analysis Method, solutions to these equations are obtained in the form of general recurrence relations. Closed form solutions in the form of the Mittag-Leffler function are perfectly obtained in the case with linear fractional reactio...
متن کاملNew exact solutions of differential equations derived by fractional calculus
and integral calculus from integer orders n to the entire complex plane. Methods are presented for using this generalized calculus with Laplace transforms of complex-order derivatives to solve analytically many differential equations in physics, facilitate numerical computations, and generate new infinite-series representations of functions. As examples, new exact analytic solutions of differen...
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: An International Journal of Optimization and Control: Theories & Applications (IJOCTA)
سال: 2020
ISSN: 2146-5703,2146-0957
DOI: 10.11121/ijocta.01.2021.00841