Every Cech-analytic Baire semitopological group is a topological group
نویسندگان
چکیده
منابع مشابه
Every Abelian Group Is a Class Group
Let T be the set of minimal primes of a Krull domain A. If S is a subset of T9 we form B = n AP for PeS and study the relation of the class group of B to that of A. We find that the class group of B is always a homomorphic image of that of A. We use this type of construction to obtain a Krull domain with specified class group and then alter such a Krull domain to obtain a Dedekind domain with t...
متن کاملLattice of compactifications of a topological group
We show that the lattice of compactifications of a topological group $G$ is a complete lattice which is isomorphic to the lattice of all closed normal subgroups of the Bohr compactification $bG$ of $G$. The correspondence defines a contravariant functor from the category of topological groups to the category of complete lattices. Some properties of the compactification lattice of a topological ...
متن کاملTHE ANALOGUE OF WEIGHTED GROUP ALGEBRA FOR SEMITOPOLOGICAL SEMIGROUPS
In [1,2,3], A. C. Baker and J.W. Baker studied the subspace Ma(S) of the convolution measure algebra M, (S) of a locally compact semigroup. H. Dzinotyiweyi in [5,7] considers an analogous measure space on a large class of C-distinguished topological semigroups containing all completely regular topological semigroups. In this paper, we extend the definitions to study the weighted semigroup ...
متن کاملPolish Groups Topological Groups a Topological Group Is a Group G with a Topology on G for Which the Operations
These notes introduce the reader to Polish groups|topological groups in which the underlying space is Polish. No background in topological groups is assumed, but I will present the material fairly rapidly and leave quite a lot for the reader to check on his or her own. My main motivation for writing such notes arises from the applications and connections in model theory, where closed subgroups ...
متن کاملThe Analytic Renormalization Group
Finite temperature Euclidean two-point functions in quantum mechanics or quantum field theory are characterized by a discrete set of Fourier coefficients Gk, k ∈ Z, associated with the Matsubara frequencies νk = 2πk/β. We show that analyticity implies that the coefficients Gk must satisfy an infinite number of model-independent linear equations that we write down explicitly. In particular, we c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1996
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-96-03384-9