Eventual Disconjugacy of Selfadjoint Fourth Order Linear Differential Equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systems-disconjugacy of a Fourth-order Differential Equation1

where r(x) >0 and p(x) are both continuous on [a, oo) and p(x) does not change sign, and related conjugate point properties to oscillation. They gave extensive evidence indicating that the oscillatory behavior when p(x) is positive is essentially different from that when p(x) is negative. Relatively little is known in general when p(x) changes sign or when derivative terms of order less than fo...

متن کامل

Approximately $n$-order linear differential equations

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

متن کامل

Nonoscillation and disconjugacy of systems of linear differential equations

The differential equations under consideration are of the form (1) §f = A(t)x, where A(t) is a piecewise continuous real nxn-matrix on a real interval a, and the vector x = (x-j...,x ) is continuous on a. The equation is said to be nonoscillatory on a if every nontrivial real solution vector x has at least one component xv which does not vanish on a. The principal concern of this paper is the d...

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Criteria for Disfocality and Disconjugacy for Third Order Differential Equations∗

In this paper, lower bounds for the spacing (b− a) of the zeros of the solutions and the zeros of the derivative of the solutions of third order differential equations of the form y + q(t)y + p(t)y = 0 (∗) are derived under the some assumptions on p and q. The concept of disfocality is introduced for third order differential equations (*). This helps to improve the Liapunov-type inequality, whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1972

ISSN: 0002-9939

DOI: 10.2307/2038467